知识图谱构建应用
从非结构化数据创建知识图谱,关键特性:
LLM Graph Builder
概述
此应用程序旨在将非结构化数据(pdfs, docs, txt, youtube视频, 网页等)转化为存储在Neo4j中的知识图谱。它利用大型语言模型(OpenAI, Gemini等)的强大功能,从文本中提取节点、关系及其属性,并使用Langchain框架创建结构化的知识图谱。
从本地计算机、GCS或S3存储桶或网页源上传文件,选择您的LLM模型并生成知识图谱。
主要功能
•知识图谱创建: 使用LLM将非结构化数据转化为结构化知识图谱。•提供模式: 在设置中提供您自己的自定义模式或使用现有模式生成图谱。•查看图谱: 在Bloom中同时查看特定来源或多个来源的图谱。•与数据聊天: 通过对话查询与Neo4j数据库中的数据进行交互,还可以检索有关响应来源的元数据。
入门
⚠️ 您需要拥有一个安装了APOC的Neo4j[1]数据库 V5.15或更高版本,才能使用此知识图谱构建器。您可以使用任何Neo4j Aura数据库[2](包括免费的数据库)。如果您使用的是Neo4j Desktop,您将无法使用docker-compose,而需要分别部署后端和前端。⚠️
部署
本地部署
通过docker-compose运行
默认情况下,仅启用OpenAI和Diffbot,因为Gemini需要额外的GCP配置。
在您的根文件夹中,创建一个.env文件并包含您的OPENAI和DIFFBOT密钥(如果您想使用两者):
OPENAI_API_KEY="your-openai-key"``DIFFBOT_API_KEY="your-diffbot-key"
如果只想使用OpenAI:
LLM_MODELS="diffbot,openai-gpt-3.5,openai-gpt-4"``OPENAI_API_KEY="your-openai-key"
如果只想使用Diffbot:
LLM_MODELS="diffbot"``DIFFBOT_API_KEY="your-diffbot-key"
然后运行Docker Compose来构建并启动所有组件:
docker-compose up --build
其他配置
默认情况下,输入源将是:本地文件、Youtube、Wikipedia、AWS S3和网页。此默认配置如下:
REACT_APP_SOURCES="local,youtube,wiki,s3,web"
如果您需要Google GCS集成,添加gcs
和您的Google客户端ID:
REACT_APP_SOURCES="local,youtube,wiki,s3,gcs,web"``GOOGLE_CLIENT_ID="xxxx"
您当然可以组合所有(本地、youtube、wikipedia、s3和gcs)或删除任何不需要的部分。
聊天模式
默认情况下,将启用所有聊天模式:vector、graph+vector和graph。如果聊天模式变量中没有提到模式,将启用所有模式:
CHAT_MODES=""
如果只想指定vector模式或只指定graph模式,可以在env中指定:
CHAT_MODES="vector,graph+vector"
分别运行后端和前端(开发环境)
或者,您可以分别运行后端和前端:
•前端:
1.通过复制粘贴frontend/example.env创建frontend/.env文件。2.根据需要更改值。3.
cd frontend``yarn``yarn run dev
•后端:
1.通过复制粘贴backend/example.env创建backend/.env文件。2.根据需要更改值。3.
cd backend``python -m venv envName``source envName/bin/activate``pip install -r requirements.txt``uvicorn score:app --reload
部署在云端
要将应用程序和包部署在Google Cloud Platform上,请在Google Cloud Run上运行以下命令:
# 前端部署``gcloud run deploy``源位置:当前目录 > Frontend``地区:32 [us-central 1]``允许未经身份验证的请求:是
# 后端部署``gcloud run deploy --set-env-vars "OPENAI_API_KEY=" --set-env-vars "DIFFBOT_API_KEY=" --set-env-vars "NEO4J_URI=" --set-env-vars "NEO4J_PASSWORD=" --set-env-vars "NEO4J_USERNAME="``源位置:当前目录 > Backend``地区:32 [us-central 1]``允许未经身份验证的请求:是
环境变量
环境变量名称 | 必选/可选 | 默认值 | 描述 |
---|---|---|---|
OPENAI_API_KEY | 必选 | ||
OpenAI的API密钥 | |||
DIFFBOT_API_KEY | 必选 | ||
Diffbot的API密钥 | |||
EMBEDDING_MODEL | 可选 | all-MiniLM-L6-v2 | 用于生成文本嵌入的模型(all-MiniLM-L6-v2, openai, vertexai) |
IS_EMBEDDING | 可选 | true | 启用文本嵌入的标志 |
KNN_MIN_SCORE | 可选 | 0.94 | KNN算法的最低得分 |
GEMINI_ENABLED | 可选 | False | 启用Gemini的标志 |
GCP_LOG_METRICS_ENABLED | 可选 | False | 启用Google Cloud日志的标志 |
NUMBER_OF_CHUNKS_TO_COMBINE | 可选 | 5 | 处理嵌入时要组合的块数 |
UPDATE_GRAPH_CHUNKS_PROCESSED | 可选 | 20 | 处理进度更新前的块数 |
NEO4J_URI | 可选 | neo4j://database:7687 | Neo4j数据库的URI |
NEO4J_USERNAME | 可选 | neo4j | Neo4j数据库的用户名 |
NEO4J_PASSWORD | 可选 | password | Neo4j数据库的密码 |
LANGCHAIN_API_KEY | 可选 | ||
Langchain的API密钥 | |||
LANGCHAIN_PROJECT | 可选 | ||
Langchain的项目 | |||
LANGCHAIN_TRACING_V2 | 可选 | true | 启用Langchain跟踪的标志 |
LANGCHAIN_ENDPOINT | 可选 | https://api.smith.langchain.com | Langchain API的端点 |
BACKEND_API_URL | 可选 | http://localhost:8000 | 后端API的URL |
BLOOM_URL | 可选 | https://workspace-preview.neo4j.io/workspace/explore?connectURL={CONNECT_URL}&search=Show+me+a+graph&featureGenAISuggestions=true&featureGenAISuggestionsInternal=true[3] | Bloom可视化的URL |
REACT_APP_SOURCES | 可选 | local,youtube,wiki,s3 | 可用的输入源列表 |
LLM_MODELS | 可选 | diffbot,openai-gpt-3.5,openai-gpt-4o | 前端可选的模型,用于实体提取和问答 |
CHAT_MODES | 可选 | vector,graph+vector,graph | 可用的聊天模式列表 |
ENV | 可选 | DEV | 应用的环境变量 |
TIME_PER_CHUNK | 可选 | 4 | 每个块的处理时间(秒) |
CHUNK_SIZE | 可选 | 5242880 | 上传文件的每个块的大小(字节) |
GOOGLE_CLIENT_ID | 可选 | ||
Google身份验证的客户端ID | |||
GCS_FILE_CACHE | 可选 | False | 如果设置为True,将文件保存到GCS进行处理;如果设置为False,将文件保存在本地 |
ENTITY_EMBEDDING | 可选 | False | 如果设置为True,将为数据库中的每个实体添加嵌入 |
LLM_MODEL_CONFIG_ollama_ | 可选 | ||
设置ollama配置为 - model_name, model_local_url用于本地部署 |
使用方法
1.通过传递URI和密码或使用Neo4j凭据文件连接到Neo4j Aura实例。2.从非结构化源列表中选择您的源以创建图谱。3.从下拉菜单中更改LLM(如果需要),该LLM将用于生成图谱。4.可选地,在实体图谱提取设置中定义模式(节点和关系标签)。5.要么选择多个文件以“生成图谱”,要么处理所有“新”状态的文件以创建图谱。6.使用网格中的“查看”查看单个文件的图谱,或者选择一个或多个文件并“预览图谱”。7.提问与已处理/完成的源相关的问题与聊天机器人交互,同时获取LLM生成的答案的详细信息。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。