数字图像处理之图像增强

1.图像增强基本概念

图像增强是通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。图象增强按增强处理所在空间不同分为空域增强方法和频域增强方法。
空域增强:直接在图像所在的二维空间进行处理,即直接对每一像素的灰度值进行处理 。空域增强按技术可分为灰度变换和空间滤波。灰度变换:基于点操作,将每一个像素的灰度值按照一定的数学变换公式转换为一个新的灰度值。
空间滤波:基于领域处理,应用某一模块对每个像素及其周围领域的所有像素进行某种数学变换运算,得到该像素的新的灰度值。比如图像平滑和图像锐化。
空域增强:首先经过傅里叶变换将图像从空间域变换到频率域,然后在频率域对频谱进行操作和处理,再将其反变换到空间域,从而得到增强的图像。

灰度增强变换:变换成输出图像中的灰度集g(x,y),即:g(x,y)=T[f(x,y)]

常用的灰度变换主要有:线性灰度变换;分段线性变换;非线性变换。

线性灰度变换:线性拉伸前:图象灰度集中在[a,b]之间;线性拉伸后:图象灰度集中在[a,b]之间

分段线性变换:仅将某一范围的灰度值进行拉伸,而其余范围的灰度值实际上被压缩了。

非线性变换:不是对图像的整个灰度范围进行扩展,而是有选择地对某一灰度值范围进行扩展,其他灰度值则有可能被压缩。常用的两种非线性变换:对数扩展,指数扩展。

(1)对数扩展:

基本形式: g(x,y)=lg[f(x,y)] .

实际应用中一般取自然对数变换,具体形式如下:g(x,y)=Cln[f(x,y)+1] 

[f(x,y)+1]是为了避免对零求对数,C为尺度比例系数,用于调节动态范围。 变换函数曲线 :

 在傅里叶谱应用广泛。

(2)指数扩展

基本形式:  g(x,y)=bf(x,y)

实际应用中,为了增加变换的动态范围,一般需要加入一些调制参数。具体形式如下:g(x,y)=bc[f(x,y)-a]-1

参数a可以改变曲线的起始位置.参数c可以改变曲线的变化速率.指数扩展可以对图像的高亮度区进行大幅扩展

 

 

2.直方图及其均衡化规定化

(a)大多数像素灰度值取在较暗区域,图像肯定较暗.一般在摄影过程中曝光过强就会造成这种结果。

(b)图像的像素灰度值集中在亮区,图像将偏亮.一般在摄影中曝光太弱将导致这种结果。从两幅图像的灰度分布来看图像的质量均不理想。

直方图规定化:

 

3.领域平均法

假设图像由许多灰度恒定的小块组成,相邻像素间存在很高的空间相关性,而噪声则相对独立。可以将一个像素及其邻域内的所有像素的平均灰度值赋给平滑图像中对应的像素,从而达到平滑的目的,又称均值滤波或局部平滑法。

非加权邻域平均法可以用模板卷积求得,即在待处理图像中逐点地移动模板,求模板系数与图像中相应像素的乘积之和,模板数为1。下图是非加权邻域平均3×3模板。

   模板与图像值卷积时,模板中系数w(0,0)应位于图像对应于(x,y)的位置。在图像中的点(x,y)处,用该模板求得的响应为:

4.中值滤波

5.频域低通滤波

6.同态滤波

7.空域锐化

平滑--->积分            锐化--->微分

一阶差分:

二阶微分(拉氏算子):

微分(差分)运算,以及剪影运算,结果都会出现负值,如何处理?
1)将负值改为0
2)取绝对值(适合于提取边缘)
3)加255,再除以2
4)加最小值的绝对值,再将灰度值范围映射到0-255之间

 

 

 

 

 

 

8.频域锐化

9.伪彩色增强

发布了29 篇原创文章 · 获赞 3 · 访问量 1629
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览