等方向定下来后再详细更新,先记录一下找的相关论文的摘要…
论文列表
- 在生物医学方面的应用
- 1 - A Survey on Active Learning and Human-in-the-Loop Deep Learning for Medical Image Analysis 医学图像分析的主动学习与人在回路深度学习研究(2019 帝国理工)
- 2 - Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis:Actively and Incrementally 用于生物医学图像分析的微调卷积神经网络:主动和增量的(2017 CVPR)
- 3 - Attention, Suggestion and Annotation: A Deep Active Learning Framework for Biomedical Image Segmentation 注意、建议与注释:生物医学图像分割的深度主动学习框架(2020 MICCAI)
在生物医学方面的应用
1 - A Survey on Active Learning and Human-in-the-Loop Deep Learning for Medical Image Analysis 医学图像分析的主动学习与人在回路深度学习研究(2019 帝国理工)
医学图像分析的主动学习与人在回路深度学习研究
摘要:全自动深度学习已经成为许多任务的最先进的技术,包括图像采集、分析和解释,以及提取临床有用的信息,用于计算机辅助检测、诊断、治疗计划、干预和治疗。然而,医学图像分析带来的独特挑战表明,在任何深度学习支持的系统中保留一个人类终端用户将是有益的。
在这篇综述中,我们研究了人类在深度学习诊断应用的开发和部署中可能发挥的作用,并关注将保留人类最终用户重要输入的技术。由于在医疗领域工作的安全关键性质,人在循环中的计算是一个我们认为在未来的研究中越来越重要的领域。我们评估了我们认为在临床实践中对深度学习至关重要的四个关键领域:
- 主动学习选择最佳的数据进行注释,以获得最佳的模型性能;
- 与模型输出的交互——使用迭代反馈来引导模型优化给定的预测,并提供有意义的方法来解释和响应预测;
- 实际考虑——开发全面的应用程序和部署前需要做的关键考虑;
- 未来前瞻性和未解问题-知识空白和相关研究领域,这将有利于人类循环计算的发展。
我们就最有希望的研究方向以及如何将每个领域的各个方面统一起来以实现共同的目标提供我们的意见。
2 - Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis:Actively and Incrementally 用于生物医学图像分析的微调卷积神经网络:主动和增量的(2017 CVPR)
摘要:将卷积神经网络(CNNs)应用于生物医学图像分析的兴趣广泛,但在生物医学成像中缺乏大型注释数据集阻碍了它的成功。注释生物医学图像不仅乏味和耗时,而且还需要昂贵的、以专业为导向的知识和技能,而这些都不容易获得。为了显著降低注释成本,本文提出了一种名为AIFT(主动、增量微调)的新方法,可以自然地将主动学习和迁移学习集成到一个单一的框架中。AIFT直接从预先训练的CNN开始,从未注释的注释中寻找“有价值”的样本,(微调的)CNN通过在每次迭代中加入新注释的样本,逐步提高CNN的性能。我们已经在三种不同的生物医学成像应用中评估了我们的方法,表明注释的成本至少可以减少一半。这种性能归因于我们的AIFT方法的高级主动和增量能力的几个优点。
3 - Attention, Suggestion and Annotation: A Deep Active Learning Framework for Biomedical Image Segmentation 注意、建议与注释:生物医学图像分割的深度主动学习框架(2020 MICCAI)
摘要:基于深度学习的分割方法虽然取得了巨大的成功,但仍然面临着一个关键的障碍:由于注释成本高,难以获得足够的训练数据。在本文中,我们提出了一个深度主动学习框架结合注意控制完全卷积网络(ag-FCN和基于分布差异的主动学习算法(dd-AL)显著减少注释的样本训练ag-FCN更好的分割性能。我们的框架在2015年MICCAIGland分段数据集和2017年MICCAI6个月婴儿大脑MRI分段数据集上进行了评估。实验结果表明,我们的框架可以通过只使用部分训练数据来实现最先进的分割性能。