原文链接:https://arxiv.org/pdf/2106.06663.pdf
evasion attack
1&2 Abstract & Introduction
本文作者分析了图注入攻击(Graph Injection Attack,GIA)设置下的 GNN 网络的拓扑脆弱性(topological vulnerability),在此基础上提出了拓扑缺陷图注入攻击(Topological Defective Graph Injection Attack, TDGIA)以进行有效注入攻击。TDGIA 首先引入了拓扑缺陷边选择策略(topological edge selection strategy)来选择原始节点与注入节点进行连接。 然后设计了平滑特征优化目标(smooth feature optimization objective)来为注入的节点生成特征。
Contributions:研究了 GIA 下 GNNs 的脆弱性,表明 GNNs 作为 non-structural-ignorant models 具有很强的脆弱性,即 GIA-attackable。在此基础上提出了 TDGIA。TDGIA 对应于 GIA 的问题设置由两个模块组成——拓扑缺陷边选择(topological defective edge selection)和注入节点属性生成的平滑对抗优化。具体来说,利用原始图的拓扑漏洞(topological vulnerability)来检测现有的最能帮助攻击的节点,然后以顺序的方式在它们周围注入新的节点。在此基础上,设计了一个平滑损失函数(smooth loss function)来优化节点的特征,以最小化目标 GNN 模型的性能。
3 Problem Definition
本文对 GMA 和 GIA 的问题定义分别如下:
定义属性图,
是 N 个节点的邻接矩阵,
是节点特征。
是预测标签的模型。
GMA 的目标是通过修改原始图 G,最小化在一组目标节点
上的正确预测次数:
其中是修改后的图,
是节点 i 的真实标签。
和
是用来衡量修改规模的预定义函数。限制
确保了图被对手稍微地修改。
GIA 在保持原图的边和 N 个节点的属性不被修改的同时,直接向图 G 中注入个节点。GIA 用下式构造
:
其中是注入节点的邻接矩阵,
是表示 G 中节点与注入节点之间边的矩阵,
是注入节点的特征矩阵。
GIA 的目标可以形式化为:
其中是注入节点集,
受到预算 b 的限制,每个注入节点的度数受到 d 的限制,注入的特征被限制为
。这些限制是为了确保 GIA 尽可能不被防御者注意到。
The GIA Process. 首先,训练代理模型;其次,在该模型上进行注入攻击;最后,攻击被转移到一个或多个目标模型。
为处理大规模的数据,GIA 可以按定义分为两步。首先,生成现有节点和注入节点之