探索蛋白质相互作用的新视角:图神经网络在预测中的应用

Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction

在生物学研究中,蛋白质-蛋白质相互作用(PPI)是理解细胞生物学过程和揭示疾病机制的关键。随着时间的推移,科学家们已经开发出了许多方法来预测这些复杂的相互作用。然而,当这些方法应用于未见过的数据集时,它们的性能往往会显著下降。在最近的一项研究中,来自SenseTime Research的Guofeng Lv、Zhiqiang Hu、Yanguang Bi和Shaoting Zhang提出了一个新的评估框架和基于图神经网络(GNN)的方法,用于更好地预测新型蛋白质之间的相互作用。

现有方法的局限性

传统的PPI预测方法在面对新的、未见过的数据集时,往往会出现性能下降的问题。这主要是因为这些方法在预测新型蛋白质之间的相互作用时表现不佳。此外,现有的评估方法往往忽略了新型蛋白质之间的相互作用,因此无法为模型在新数据集上的性能提供指导性的评估。

一个新的评估框架

为了解决这个问题,研究者们设计了一个新的评估框架,该框架充分考虑了新型蛋白质之间的相互作用,并能够在不同数据集上提供一致的评估。这个框架通过使用广度优先搜索(BFS)和深度优先搜索(DFS)算法来构建测试集,从而更好地模拟现实世界中未知蛋白质的分布情况。

图神经网络的应用

研究者们提出了一种基于GNN的方法(GNN-PPI),用于更好地预测新型蛋白质之间的相互作用。GNN-PPI的核心思想是利用蛋白质之间的相关性来提供对新型蛋白质的有用信息。通过将蛋白质作为节点&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值