1 时间序列
1.1 时间序列预测
1.2 时间序列补全
论文名称 | 来源 | 主要内容 | |
论文笔记 Spectral Regularization Algorithms for Learning Large IncompleteMatrices (soft-impute)_UQI-LIUWJ的博客-CSDN博客 | 2010 JMLR | 基于迭代SVD的矩阵补全(软阈值+硬阈值) 对MF有很多理论的证明和说明(写论文的时候可以用来参考) | |
| NIPS 2016 | TRMF 辅助论文:最小二乘法复现TRMF_UQI-LIUWJ的博客-CSDN博客 提出了一个新的时间正则化矩阵分解框架(TRMF)用于高维时间序列分析。 | |
论文笔记 & R 笔记:imputeTS: Time Series Missing ValueImputation in R_UQI-LIUWJ的博客-CSDN博客 | R语言包,进行单变量时间序列补全 | ||
论文笔记:Autoregressive Tensor Factorizationfor Spatio-temporal Predictions_UQI-LIUWJ的博客-CSDN博客 | ICDM 2017 | 在TRMF的基础上,添加了空间自回归DAR的正则项 | |
论文笔记: BRITS: Bidirectional Recurrent Imputation for Time Series_UQI-LIUWJ的博客-CSDN博客 | 2018NIPS | 双向LSTM进行补全&时间序列分类/回归 | |
论文笔记:Hankel Matrix Factorization for Tagged Time Series to Recover Missing Values during Blackouts_UQI-LIUWJ的博客-CSDN博客 | 2019 ICDE | 对于连续数据缺失的补全(单变量时间序列) | |
论文笔记:NAOMI: Non-Autoregressive MultiresolutionSequence Imputation_UQI-LIUWJ的博客-CSDN博客 | 2019NIPS | 使用双向RNN+分治(对抗学习)的方式进行补全 | |
| 2019IJCAI | EMF,SMF 用于 0~1的打分矩阵补全 | |
| ICDE2019 | graph-autoencoder | |
论文笔记 Traffic Data Reconstruction via Adaptive Spatial-Temporal Correlations_UQI-LIUWJ的博客-CSDN博客 | part-c 2019 | TAS-LR 论文辅助笔记 & 图拉普拉斯正则项推导_UQI-LIUWJ的博客-CSDN博客 MF+时间序列约束和自适应拉普拉斯正则化空间约束 | |
论文笔记:Time Series Data Imputation: A Survey on Deep Learning Approaches_UQI-LIUWJ的博客-CSDN博客 | 20年(attention之前)的time series 补全论文综述 | ||
论文笔记:Learning Disentangled Representations of Video with Missing Data_UQI-LIUWJ的博客-CSDN博客 | 2020 NIPS | 带缺失数据的视频补全、预测 使用VAE架构,将视频每个object的每一帧分解成appearance、pose和missingness | |
论文笔记:Mind the Gap An Experimental Evaluation of Imputation ofMissing Values Techniques in TimeSeries_UQI-LIUWJ的博客-CSDN博客 | PVLDB 2020 | 12种方法的比较 | |
论文笔记:SAITS: SELF-ATTENTION-BASED IMPUTATION FOR TIMESERIES_UQI-LIUWJ的博客-CSDN博客 | 2021 | 将self-attention运用到time-series中 | |
论文笔记:Missing Value Imputation for Multi-view UrbanStatistical Data via Spatial Correlation Learning_UQI-LIUWJ的博客-CSDN博客 | TKDE 2021 |
| |
论文笔记:HKMF-T: Recover From Blackouts in TaggedTime Series With Hankel Matrix Factorization_UQI-LIUWJ的博客-CSDN博客 | 2021 TKDE | 对于连续数据缺失的补全(延伸到多变量时间序列) | |
论文笔记:FILLING THE G AP S: MULTIVARIATE TIME SERIES IMPUTATION BY GRAPH NEURAL NETWORKS_UQI-LIUWJ的博客-CSDN博客 | 2022 ICLR | 空间encoder时message passing network 时空encoder是将message passing network应用到GRU里面 | |
论文笔记:Spatial Data Imputation with Landmarks_UQI-LIUWJ的博客-CSDN博客 | 非负矩阵分解+拉普拉斯约束+landmark(landmark细节后续补充) | ||
论文笔记:Multivariate Time-series Imputation with Disentangled Temporal Representations_UQI-LIUWJ的博客-CSDN博客 | ICLR2023 | 使用MF的框架+解耦时间特征表征,进行时间序列补全 |
1.3 next-location
论文名称 | 来源 | 主要内容 | ||
论文笔记:ATime-Aware Trajectory Embedding Model for Next-Location Recommendation-CSDN博客 | Knowledge and Information Systems, 2018 |
| ||
| 提出一种基于注意力机制的神经网络架构,考虑用户访问轨迹中每个访问点相较于整个过往访问轨迹的时空关系,以此对不相邻非连续但功能相近的访问点进行关联,打破以往仅仅关联连续、相邻访问点的限制。 | |||
论文笔记:Pre-training Context and Time Aware Location Embeddings from Spatial-TemporalTrajectories for U-CSDN博客 | AAAI 2021 | 了处理上述地点嵌入中的问题,作者提出了场景化及时间感知的地点嵌入模型CTLE
| ||
论文笔记:Context-aware multi-head self-attentional neural network model fornext location prediction-CSDN博客 | 2023 traffic part C2023 traffic part C | 提出一个整合各种上下文信息的MHSA(multi head self attention)-based模型,用于下一位置预测 | ||
论文笔记: GETNext:Trajectory Flow Map Enhanced Transformer for Next-CSDN博客 | SIGIR 2022 | ![]() | ||
论文笔记:Predicting mobile users‘ next location using the semantically enriched geo-embedding model and-CSDN博客 | 2023 Computers, Environment and Urban Systems | ![]() | ||
论文笔记:A survey on next location prediction techniques, applications, and challenges-CSDN博客 | EURASIP Journal on Wireless Communications and Networking 2022 | |||
论文笔记:DeepMove: Predicting Human Mobility with Attentional Recurrent Networks-CSDN博客 | ||||
论文笔记:Spatial-Temporal Interval Aware Sequential POI Recommendation-CSDN博客 | ICDE 2022 | ![]() |
1.3.1 2023 humob workshop
论文笔记:Cell-Level Trajectory Prediction Using Time-embeddedEncoder-Decoder Network-CSDN博客 论文辅助笔记:Cell-Level Trajectory Prediction Using Time-embeddedEncoder-Decoder Network-CSDN博客 | ![]() |
论文笔记:Human Mobility Prediction Challenge: Next LocationPrediction using Spatiotemporal BERT-CSDN博客 | ![]() |
论文笔记:Multi-perspective Spatiotemporal Context-aware NeuralNetworks for Human Mobility Prediction-CSDN博客 | ![]() |
论文笔记:Estimating future human trajectories from sparse time series data-CSDN博客 | |
论文笔记:GeoFormer: Predicting Human Mobility using GenerativePre-trained Transformer (GPT)-CSDN博客 | ![]() |
1.4 region representation
论文名称 | 来源 | 主要内容 |
论文笔记:Region Representation Learning via Mobility Flow_UQI-LIUWJ的博客-CSDN博客 | 2017 CIKM | 使用了flow graph和spatial graph来学习region 向量表征 每一个点表示(地理空间上的点+时刻) |
1.5 OD prediction
论文名称 | 来源 | 主要内容 |
论文笔记:Short-term origin-destination demand prediction in urban rail transit systems: A channel-wise a_交通 inflow outflow_UQI-LIUWJ的博客-CSDN博客 | 使用历史OD对,实时流入流出信息,预测地铁通行的OD | |
论文笔记:Contextualized Spatial–Temporal Network for Taxi rigin-Destination Demand Prediction_UQI-LIUWJ的博客-CSDN博客 | 2019 IEEE Transactions on Intelligent Transportation Systems | 捕获源区域和目标区域的局部空间特征,融合气象数据捕获时间演化特征,捕获全局空间特征 release了一个纽约的OD公开数据集 |
论文笔记:DeepUrbanEvent: A System for Predicting Citywide Crowd Dynamics at Big Events-CSDN博客 | 2019 KDD oral | 仅从当前瞬时的观测中提取“深度“趋势以生成对于短期内人群动态变化的准确预测 类似于视频预测的方式 |
论文笔记 Origin-Destination Matrix Prediction via Graph Convolution: aNew Perspective of Passenger Dema-CSDN博客 | CIKM 2022 | 空余图神经网络(邻居信息传递) 地理空间邻接关系+语义邻接关系 |
论文笔记:Stochastic Origin-Destination Matrix Forecasting Using Dual-Stage Graph Convolutional, Recurren_UQI-LIUWJ的博客-CSDN博客 | 2020 ICDE | 张量分解+Ses2Ses GRU+张量乘法,计算OD随机矩阵![]() |
论文笔记:Inferring Origin-Destination Flows FromPopulation Distribution_UQI-LIUWJ的博客-CSDN博客 | TKDE 2022 | attention-STGCN捕捉时空信息+POI分布辅助,作为源区域和目标区域embedding的权重 |
论文笔记:A survey on next location prediction techniques, applications, and challenges-CSDN博客 | EURASIP Journal on Wireless Communications and Networking 2022 |
1.6 其他
论文名称 | 来源 | 主要内容 |
论文笔记:A Comprehensive Survey of Regression Based LossFunctions for Time Series Forecasting_UQI-LIUWJ的博客-CSDN博客 | 时间序列中常用的12种损失函数 | |
论文笔记:Constructing spatiotemporal speed contour diagrams: usingrectangular or non-rectangular paralle_UQI-LIUWJ的博客-CSDN博客 | 2019 Transportmetrica B | 使用平行四边形绘制交通栅格图 |
论文笔记 Understanding Electricity-Theft Behavior via Multi-Source Data-CSDN博客 | WWW 2020 oral |
|
论文笔记:Urban visual intelligence: Uncovering hidden city profiles with street view images-CSDN博客 | pnas 2022 | 基于计算机视觉和街景图像来探索城市环境与居民生活的关系 |
论文笔记:Uniform Sequence Better: Time Interval Aware Data Augmentation for Sequential Recommendation-CSDN博客 | AAAI 2023 | 均匀序列比非均匀序列可以显著提高序列推荐的性能 提出了五个时间间隔感知的数据增强算子(Ti-Crop, Ti-Reorder, Ti-Mask, TiSubstitute, Ti-Insert)来将非均匀序列转换为均匀序列 |
论文略读:DuMapNet: An End-to-End Vectorization System for City-Scale Lane-Level Map Generation-CSDN博客 | 2024 KDD | ![]()
|
1.7 时间序列异常检测
论文名称 | 来源 | 主要内容 |
论文笔记:Deep Learning for Anomaly Detection inTime-Series Data: Review, Analysis,and Guidelines_UQI-LIUWJ的博客-CSDN博客 | 20年时间序列异常检测综述 |
1.8 手机信令数据
论文名称 | 来源 | 主要内容 |
论文笔记:基于手机基站数据的混合地图匹配算法研究_UQI-LIUWJ的博客-CSDN博客 | 2014 交通运输系统工程与信息 | 根据基站切换数据,还原车辆路段轨迹数据 |
论文笔记:Enhancing spatial accuracy of mobile phone data usingmulti-temporal dasymetric interpolation_UQI-LIUWJ的博客-CSDN博客 | INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2017 | 使用手机信令数据+区域楼房高度+区域人口活动数据,精细化区域人口分布于情况 |
论文笔记:Spatial Accuracy Evaluation for Mobile PhoneLocation Data With Considerationof Geographical C-CSDN博客 | 2020 ieee access |
|
论文笔记:TRANSIT: Fine-grained human mobility trajectory inference at scalewith mobile network signalin-CSDN博客 | Part C 2021 | 使用网络信令数据(NSD)提取精准的用户位置信息 利用人类移动性的重复性质,即同一个个体通常在两个相同的给定位置之间进行多次旅行,通常遵循非常相似的路径 |
论文笔记:GatedRecurrent Unit withRSSIs from Heterogeneous Network forMobile Positioning-CSDN博客 | 2021 Mobile Information Systems |
|
论文笔记:Influence of geographical determinants on the spatial distribution of positioning uncertainties-CSDN博客 | Transactions in GIS. 2021 | 也是一篇评价定位偏差因素的文章 |
论文笔记:SelfHAR: Improving Human Activity Recognition through Self-training with Unlabeled Data-CSDN博客 | Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021 |
|
论文笔记:CellSense: Human Mobility Recovery via Cellular Network Data Enhancement-CSDN博客 | 2021 Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., | 使用蜂窝计费记录(CBR)(用户通话、短信、互联网访问)时的数据(连接哪个基站) 设计一个恢复模型,来推断个别用户原始CBR数据间隙中历史遗漏的观测数据,以获得密集的CBR数据 使用DFS+最大似然估计,得到每一个路段 速度的均值和方差,用这个路段+速度+区域的人口分布+用户的特征作为联合特征向量,送入双向GRU中,得到对应的恢复基站位置/出行modality |
论文笔记:Accurate Localization using LTE Signaling Data-CSDN博客 | International Conference on Computer and Information Technology (CIT) | 仅使用TA(时序提前)和RSRP【这里单位是瓦】(参考信号接收功率),以及所连接的基站,根据基于HMM的路网匹配得到精确位置 |
论文笔记:A Comprehensive Review of Indoor/Outdoor Localization Solutions in IoT era: Research Challenges-CSDN博客 | Computer Networks 2022 | 室内室外 定位计数的综述 |
论文笔记:Spatio-Temporal Trajectory Similarity Measures: AComprehensive Survey and Quantitative Study_UQI-LIUWJ的博客-CSDN博客 | 2023 | 轨迹相似度最新综述 基于learning or 不基于learning 自由空间 or 路网 单机 or 分布式 |
论文笔记:Accurate Map Matching Method for Mobile Phone Signaling Data Under Spatio-Temporal Uncertainty-CSDN博客 | IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2023 | 使用移动电话信号数据(MSD)+HMM进行路网匹配 |
1.9 轨迹相似
论文名称 | 来源 | 主要内容 |
论文笔记: Trajectory Clustering: A Partition-and-Group Framework_UQI-LIUWJ的博客-CSDN博客 | 07 SIGMOD | 轨迹分成子线段+类DBSCAN的聚类方法 |
论文笔记:A Multi-source Trajectory Correlation Algorithm based on Spatial-temporal Similarity_UQI-LIUWJ的博客-CSDN博客 | 17 ICIF | 异步多源轨迹相似度 |
论文笔记:Deep Representation Learning for Trajectory Similarity Computation_UQI-LIUWJ的博客-CSDN博客 | 2018 ICDE | 将轨迹转变成grid 为token的sequence,输入低质量轨迹(低采样率),希望输出高质量轨迹(高采样率) 使用空间邻近感知的损失函数,相比于NLP的NLL loss,更好地适应时空任务 使用类似于skip gram的方法,预训练各个grid的embedding |
论文笔记:Effective and Efficient Sports Play Retrieval with Deep Representation Learning_UQI-LIUWJ的博客-CSDN博客 | 19 KDD | 比较体育比赛中两个play的相似程度 使用带负采样的skipgram建模play中每一子轨迹段的vector,然后使用 |
论文笔记:High-performance spatiotemporal trajectory matching across heterogeneous data sources_UQI-LIUWJ的博客-CSDN博客 | 2019 Future Generation Computer Systems | 提出时空相似度+利用SPark 来进行异质时空轨迹相似度计算 |
论文笔记:Spatial-Temporal Similarity for Trajectories with Location Noise and Sporadic Sampling_UQI-LIUWJ的博客-CSDN博客 | 21 ICDE | 判断两个轨迹相似于否,就是看在某些时刻(两个轨迹采样时间的并集),两个轨迹都在某一个网格的概率 轨迹数据是有定位误差和零星采样问题 |
论文笔记:PyTrack: A Map-Matching-Based Python Toolbox for Vehicle Trajectory Reconstruction_UQI-LIUWJ的博客-CSDN博客 | python包,用于将GPS轨迹和openstreetmap对应
| |
论文笔记:ST2Vec: Spatio-Temporal Trajectory SimilarityLearning in Road Networks_UQI-LIUWJ的博客-CSDN博客 | 22 KDD | T2Vec只考虑了空间相似性,没有考虑时间相似性 这里分别用GNN和LSTM建模空间和时间特征,然后将二者融合起来,送入带attention的LSTM,得到hidden embedding,通过计算hidden embedding的记录比较相似度 |
论文笔记:MTrajRec: Map-Constrained Trajectory Recovery via Seq2SeqMulti-task Learning_UQI-LIUWJ的博客-CSDN博客 | 22 KDD | seq2seq 低采样率轨迹,映射到 高采样率路网轨迹(串行预测所在的路网、当前路网多少比例的点) 同时考虑了每个点的POI,路段信息,和全局天气时间信息 |
论文笔记:TrajGAT: A Graph-based Long-term Dependency ModelingApproach for Trajectory Similarity Computa_UQI-LIUWJ的博客-CSDN博客 | 22 KDD | 用空间PR四叉树描述轨迹,使用GAT代替Transformer里面的attention结构,建模长轨迹的依赖关系 |
1 论文笔记:Efficient Trajectory Similarity Computation with ContrastiveLearning_UQI-LIUWJ的博客-CSDN博客 | 22 CIKM |
|
论文笔记:Can Adversarial Training benefit Trajectory Representation? AnInvestigation on Robustness for-CSDN博客 | 22 CIKM | encoder-decoder学习轨迹的表示,但是加入了对抗训练——轨迹是网格序列,网格的embedding加入了梯度噪声 用GAN控制梯度噪声的大小 ——>这边论文的目的是学习带噪声的轨迹相似度 |
论文笔记:TMN: Trajectory Matching Networks for PredictingSimilarity-CSDN博客 | 22 ICDE | 输入是轨迹对,使用轨迹点之间的attention+轨迹的embedding 作为LSTM的输入, loss function是ground-truth 轨迹距离 减去 预测的轨迹距离 这里轨迹不再转化成网格序列,而是使用线性层进行转化 |
论文笔记:DEEP DECLARATIVE DYNAMIC TIME WARPING FOREND-TO-END LEARNING OF ALIGNMENT PATHS_UQI-LIUWJ的博客-CSDN博客 | 2023 ICLR | 连续可微DTW |
论文笔记:Towards robust trajectory similarity computation: Representation‑based spatio‑temporal similar_UQI-LIUWJ的博客-CSDN博客 | 2023WWW (journal) | 和T2vec极为类似,也是基于RNN的encoder-decoder 不一样的是建模为时空网格,临近关系为空间临近关系 |
论文笔记:GRLSTM: Trajectory Similarity Computation with Graph-Based Residual LSTM 2023 AAAI_UQI-LIUWJ的博客-CSDN博客 | 2023 AAAI | |
论文笔记:Contrastive Trajectory Similarity Learning withDual-Feature Attention_UQI-LIUWJ的博客-CSDN博客 | 23 ICDE | 在网格序列的轨迹表示之外,额外地使用一个描述轨迹空间特征的四元组描述每个点 将网格序列+四元组序列同时作为魔改Transformer encoder的输入,得到对应随机的embedding 使用类似于MOCO的方式,更新encoder的参数 |
论文笔记(整理):轨迹相似度顶会论文中使用的数据集_UQI-LIUWJ的博客-CSDN博客 | ||
论文笔记:Spatio-Temporal Trajectory Similarity Measures: AComprehensive Survey and Quantitative Study_UQI-LIUWJ的博客-CSDN博客 | ||
论文笔记:GEO-BLEU: Similarity Measure for Geospatial Sequences-CSDN博客 | 2023 sigspatial |
1.10 轨迹匹配
论文名称 | 来源 | 主要内容 |
论文笔记:Map-Matching for low-sampling-rate GPS trajectories(ST-matching)_UQI-LIUWJ的博客-CSDN博客 | ACM-GIS 2009 | 拓扑关系+速度,基于HMM的路径匹配 |
论文笔记:Hidden Markov Map MatchingThrough Noise and Sparseness_UQI-LIUWJ的博客-CSDN博客 | 09 sigspatial | 和ST-MATCHING很接近 |
论文笔记:An Interactive-Voting Based Map Matching Algorithm_UQI-LIUWJ的博客-CSDN博客 | 2010 MDM | 在ST-MATCHING的基础上,加入了投票的机制 |
论文笔记:基于手机位置信息的地图匹配算法_UQI-LIUWJ的博客-CSDN博客 | 2015 计算应用 | 基本上就是HMMM,多了一个高采样率 VS 低采样率的匹配结果对比 |
论文笔记:路网匹配算法综述_UQI-LIUWJ的博客-CSDN博客 | 17 | 路网匹配综述,主要是基于HMM的 |
论文笔记:Fast map matching, an algorithm integrating hidden Markov model with precomputation_UQI-LIUWJ的博客-CSDN博客 | International Journal of Geographical Information Science 18 | 也是一个HMM结构,不过在计算路径距离前,先预计算了小于阈值Δ的路径,加快了寻找路径的时间。 同时增加了反向移动惩罚,避免反复横跳 |
论文笔记:Efficient and Effective Similar Subtrajectory Search with Deep Reinforcement Learning (子轨迹匹配)_UQI-LIUWJ的博客-CSDN博客 | ICDE 2020 |
|
论文笔记:From driving trajectories to driving paths: a survey on map‑matching Algorithms_UQI-LIUWJ的博客-CSDN博客 | 2022 | 新的路网匹配方法 |
论文笔记:L2MM: Learning to Map Matching with Deep Models for Low-Quality GPS Trajectory Data_UQI-LIUWJ的博客-CSDN博客 | 2023 TKDD | 本质上是一种encoder-decoder模型,只不过encoder的输出这里加上了学习pattern这个限制 |
论文笔记:Continuous Trajectory Generation Based on Two-Stage GAN_UQI-LIUWJ的博客-CSDN博客 | 2023 AAAI | 轨迹生成,使用A*思路,RL算法,GAN框架 |
论文笔记:An iterative framework with active learning to match segments in road networks_UQI-LIUWJ的博客-CSDN博客 | CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE 2023 |
|
1.11 轨迹恢复
论文笔记:MTrajRec: Map-Constrained Trajectory Recovery via Seq2SeqMulti-task Learning_UQI-LIUWJ的博客-CSDN博客 | 2021 KDD【路网空间】 |
论文笔记:Deep Trajectory Recovery with Fine-Grained Calibration using Kalman Filter-CSDN博客 | TKDE 2021 【自由空间】 利用 subseq2seq获得可能在哪个grid里面,利用卡尔曼滤波得到准确的轨迹还原位置 |
论文笔记:AttnMove: History Enhanced Trajectory Recovery via AttentionalNetwork-CSDN博客 | AAAI 2021 【自由空间】
|
论文笔记:SimiDTR: Deep Trajectory Recovery with Enhanced Trajectory Similarity-CSDN博客 | DASFFA 2023 【自由空间】 利用不同轨迹之间的相似性来建模不完整轨迹的复杂移动规律 |
论文笔记:RNTrajRec: Road Network Enhanced Trajectory Recovery with Spatial-Temporal Transformer-CSDN博客 | 2023 ICDE 将轨迹还原到路网上,同时也是multi-task(哪个路段,多少比例) |
论文略读:TrajRecovery: An Efficient Vehicle Trajectory Recovery Framework based on Urban-Scale Traffic -CSDN博客 | 2024 KDD
|
1.12时空外推
论文略读:Graph Neural Processes for Spatio-Temporal Extrapolation-CSDN博客 |
1.13 快递数据
论文笔记:LaDe: The First Comprehensive Last-mile Delivery Dataset from Industry_lade数据集-CSDN博客
1.14 路段级别速度预测
论文笔记:FDTI: Fine-grained Deep Traffic Inference with Roadnet-enriched Graph-CSDN博客
2 datamining
论文名称 | 来源 | 主要内容 | |
论文笔记:Integrating Classification and Association Rule Mining (CBA算法)_UQI-LIUWJ的博客-CSDN博客 | 1998 KDD |
| |
|
3 其他
论文名称 | 来源 | 主要内容 | |
论文笔记 Bayesian Probabilistic Matrix Factorizationusing Markov Chain Monte Carlo (ICML 2008)_UQI-LIUWJ的博客-CSDN博客 | ICML 2008 | BPMF论文辅助笔记: 固定U,更新θU 部分推导_UQI-LIUWJ的博客-CSDN博客 https://blog.csdn.net/qq_40206371/article/details/120865455 在模型中使用了马尔可夫链蒙特卡罗(MCMC)方法进行近似推理 为超参数引入先验,并在参数和超参数上最大化模型的对数后验,从而允许基于训练数据自动控制模型的复杂性 。 | |
机器学习笔记(伪标签)/论文笔记 Pseudo-Label: The Simple and Efficient Semi-Supervised Learning Method for Deep Neu-CSDN博客 | 2013 icmlW |
| |
论文笔记:A multi-source dataset of urban life in the city of Milan and the Province of Trentino_UQI-LIUWJ的博客-CSDN博客 | scientific data 2015 | 米兰市和特伦蒂诺省的电信、天气、新闻、社交网络和电力数据组成的数据 | |
论文笔记:Localizing Cell Towers fromCrowdsourced Measurements-CSDN博客 | 2015 | 如何通过OpenCellID中的众包cell 数据,定位到对应的基站位置 | |
| ICLR 2020 | ||
论文笔记:Honor of Kings Arena: an Environment forGeneralization in Competitive Reinforcement Learning_UQI-LIUWJ的博客-CSDN博客 | NIPS2022 | 王者荣耀开悟平台 | |
论文笔记:A survey of deep nonnegative matrix factorization_UQI-LIUWJ的博客-CSDN博客 | 2022 | DNMF综述 | |
论文笔记:MEASURING DISENTANGLEMENT: A REVIEW OF METRICS_UQI-LIUWJ的博客-CSDN博客 | 2022 | 解耦表征度量综述 | |
论文笔记:The Impact of AI on Developer Productivity:Evidence from GitHub Copilot-CSDN博客 | 2023 | 对GitHub Copilot(一种人工智能编程助手)的控制实验结果 |
4 生物
论文名称 | 来源 | 主要内容 |
生物计算论文笔记1:The construction of next-generationmatrices for compartmentalepidemic models_UQI-LIUWJ的博客-CSDN博客 | SEIR模型中基本再生数R0和下一世代矩阵NGM之间的关系 | |
论文笔记:Highly accurate protein structure prediction with AlphaFold (AlphaFold 2 & appendix)_UQI-LIUWJ的博客-CSDN博客 | 利用Transformer变体,物理和生物知识,预测蛋白质3D结构 原子级别的误差 | |
论文笔记:BridgeDPI: a novel Graph Neural Network for predicting drug–protein interactions_UQI-LIUWJ的博客-CSDN博客 | 2022 bioinformatics | 在GNN中引入桥节点,以更好地描述蛋白质和药物之间的关系 |
论文笔记:Learning embedding features based on multisense-scaled attention architecture to improve the pr-CSDN博客 | 2021 Briefings in Bioinformatics | 现有的研究都高度依赖手工特征作为训练预测模型的输入,没有采用适合处理顺序数据的高级深度学习技术 |
5 图
5.1 图聚类
论文名称 | 来源 | 主要内容 | |
论文笔记:Weighted Graph Cuts without Eigenvectors:A Multilevel Approach_UQI-LIUWJ的博客-CSDN博客 | TPAMI 2007 | 图中点聚类<——>kernel k-means | |
| ICAISC 2015 | 模糊聚类 + 分层聚类 | |
机器学习笔记:node2vec(论文笔记:node2vec: Scalable Feature Learning for Networks)_UQI-LIUWJ的博客-CSDN博客 | 2016 KDD | Node2VEC 使用random walk+负采样进行graph中点的embedding | |
| 2017 | graph点cluster 算法 |
5.2 GNN
论文名称 | 来源 | 主要内容 | |
论文笔记:SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS_UQI-LIUWJ的博客-CSDN博客 | ICLR 2017 | Kipf GNN 使用一阶近似切比雪夫作为卷积核 | |
论文笔记 Graph Attention Networks_UQI-LIUWJ的博客-CSDN博客 | 2018 ICLR | graph+attention | |
论文笔记:Graph WaveNet for Deep Spatial-Temporal Graph Modeling_UQI-LIUWJ的博客-CSDN博客 | 2019 IJCAI | 首次提出自适应邻接矩阵的概念 时间依赖性:空洞卷积 空间依赖性:扩散图卷积(DCRNN的思路)+自适应邻接矩阵 | |
论文笔记:Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting_UQI-LIUWJ的博客-CSDN博客 | 2020 NIPS |
| |
论文笔记:Graph neural networks: A review of methods and applications_UQI-LIUWJ的博客-CSDN博客 | 2020 | 20年一个比较全的GNN综述 | |
论文笔记:E(n) Equivariant Graph Neural Networks_UQI-LIUWJ的博客-CSDN博客 | 2021ICML | 在传统GNN的基础上,每个点不仅有标量信息,还有矢量信息,EGNN可以保证矢量经过EGNN之后平移、旋转、排列等变性 | |
| IJCAI | 自适应邻接矩阵+STGCN+时空注意力,用于睡眠阶段分类 | |
论文笔记:DropMessage: Unifying Random Dropping for Graph Neural Networks_UQI-LIUWJ的博客-CSDN博客 | 2023 AAAI | 1 提出了一种新的GNN上的随即丢弃方法,可以缓解GNN训练时的过拟合、过渡平滑、不鲁棒 2 整合之前的random drop 方法,他们是本文提出的DropMessage的特例 3 从理论上说明了,GNN上的random drop,等价于在损失函数上加了正则项 | |
论文略读:Less is More: on the Over-Globalizing Problem in Graph Transformers-CSDN博客 | icml 2024 | Graph Transformer 中的过全局化问题 (Over-Globalizing Problem) 论文提出了一种新的采用协同训练的两级全局 Graph Transformer 方法 (CoBFormer) | |
论文略读:GOAt: Explaining Graph Neural Networks via Graph Output Attribution-CSDN博客 | iclr 2024 reviewer评分 568 | 论文介绍了一种计算效率高的局部级GNN解释技术,称为图输出归因(GOAt) |
5.3 图对比学习
论文名称 | 来源 | 主要内容 |
论文笔记:LightGCL: Simple Yet Effective Graph Contrastive Learning for Recommendation_UQI-LIUWJ的博客-CSDN博客 | ICLR 2023 | 使用近似奇异值分解以获得增强图信息 |
论文略读:Contrastive Learning is Spectral Clustering on Similarity Graph-CSDN博客 | iclr 2024 reviewer评分 56610 | 论文证明了使用标准InfoNCE损失的对比学习等同于在相似性图上进行谱聚类 |
6 机器学习类
论文名称 | 来源 | 主要内容 |
论文笔记:On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima_UQI-LIUWJ的博客-CSDN博客 | ICLR 2017 | 大batch size会导致在测试集上泛化效果不行,原因在于大batch学到的local minima太sharp |
当分布 非正态分布时,能否使用Pearson Correlation?_UQI-LIUWJ的博客-CSDN博客 | 大部分情况下,Pearson correlation是很robust的,除非数据很不正态分布,且数据量不足。论文中比较了12种处理方法,并提出建议 | |
论文笔记:Positive-incentive Noise_UQI-LIUWJ的博客-CSDN博客 | 2022 TNNLS | 噪声也不都是坏处——>引入任务熵,判断噪声是正激励噪声还是纯噪声 |
论文略读:Benign Oscillation of Stochastic Gradient Descent with Large Learning Rate-CSDN博客 | iclr 2024 reviewer评分 368 |
|
论文略读 Low Rank Matrix Completion via Robust Alternating Minimization in Nearly Linear Time-CSDN博客 | iclr 2024 |
|
局部最优点论文观点集锦-CSDN博客 | ||
7 强化学习
论文名称 | 来源 | 主要内容 | |
论文笔记 Hierarchical Reinforcement Learning for Scarce Medical Resource Allocation_UQI-LIUWJ的博客-CSDN博客 | KDD 2021 | 使用GRU来求解未知疾病状态 使用DQN来或者各区域重要性排序 使用actor-critic来求解各区域口罩病床分配情况 | |
| 使用attention和LSTM进行空间和时间建模,然后对每个红绿灯分别进行强化学习,计算红绿灯控制方式 | ||
论文略读:ZipIt! Merging Models from Different Tasks without Training-CSDN博客 | iclr 2024 reviewer 评分 5666 | 引入了“ZipIt!”,一种合并两个相同架构的任意模型的通用方法,该方法包含两个简单的策略。 |
7.1 分层强化学习
论文名称 | 来源 | 主要内容 |
论文笔记: Feudal Reinforcement Learning_UQI-LIUWJ的博客-CSDN博客 | 用Q-table实现的最早的层次强化学习 | |
分层强化学习:基于选项(option)的强化学习/论文笔记 The Option-Critic Architecture 2017 AAAI_UQI-LIUWJ的博客-CSDN博客 | AAAI 2017 | 两层决策,option可以视作一组action的时域抽象。上层策略现决定选择哪个option。然后option再选择执行哪些action,每个option有自己的策略函数和终止函数 |
论文笔记:When Waiting Is Not an Option:Learning Options with a Deliberation Cost AAAI 2018_UQI-LIUWJ的博客-CSDN博客 | AAAI 2018 | 在上一篇option-critic的基础上,认为切换option的时候是有开销的,不能很频繁地切换option |
论文笔记:Hierarchical Deep Reinforcement Learning:Integrating Temporal Abstraction and Intrinsic_UQI-LIUWJ的博客-CSDN博客 | 上层函数mata-controller根据state,从实现给定的目标集中选择一个目标传给底层函数controller,controller 根据状态s和目标g选择动作。 goal作为一个输入,所以不同的goal共享相同的Q函数 | |
论文笔记:FeUdal Networks for Hierarchical Reinforcement Learning_UQI-LIUWJ的博客-CSDN博客 | 也是上层制定goal,下层实现。 不过和上一个H-DQN不同,这里并没有一个goal集合,这边学习的goal可以看成是一个direction,也就是状态S 变化的方向。如果下层学到的策略使得实际的状态按照goal的方向变化,那么reward会比较大 | |
论文笔记:Universal Value Function Approximators_UQI-LIUWJ的博客-CSDN博客 | 求解V(s,g)。 由于(s,g)对很少,所以将s-g对组成的矩阵进行矩阵分解(行state,列goal) |
8 CV
论文名称 | 来源 | 主要内容 | |
论文/机器学习笔记:SENet (Squeeze-and-Excitation Networks)_UQI-LIUWJ的博客-CSDN博客 | 2017 ImageNet冠军 | 学习各个channel重要性权重,对channel进行重新加权 | |
论文笔记:Spatial-Temporal Map Vehicle Trajectory Detection Using Dynamic Mode Decomposition and Res-UNe_UQI-LIUWJ的博客-CSDN博客 | 轨迹提取 | ||
论文笔记:CTSpine1K: A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography_UQI-LIUWJ的博客-CSDN博客 | 一个大规模脊柱分割/识别的数据集 | ||
论文笔记:nnU-Net: Self-adapting Frameworkfor U-Net-Based Medical Image Segmentation_UQI-LIUWJ的博客-CSDN博客 | 在经典U-Net的基础上,没有对模型架构进行修改,而是根据数据集自动进行数据预处理、模型架构参数选择、训练、inference等 医学影像分割 | ||
论文笔记:nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation_UQI-LIUWJ的博客-CSDN博客 | |||
论文笔记:ViTGAN: Training GANs with Vision Transformers_UQI-LIUWJ的博客-CSDN博客 | 2021 | 使用ViT而不是CNN来构建GAN 使用欧氏距离代替attention中的点积 同时调整初始化时候的权重矩阵 | |
| cvpr2021 | 类似于BERT的MLM | |
论文笔记:Swin-Unet: Unet-like Pure Transformer for MedicalImage Segmentation_UQI-LIUWJ的博客-CSDN博客 | CVPR 2021 | swin transformer+u-net | |
论文笔记:Swin Transformer: Hierarchical Vision Transformer using Shifted Windows_UQI-LIUWJ的博客-CSDN博客 | ICCV 2021 best paper | 基于窗口的transformer,具有多尺度信息,同时计算复杂度和图像的尺寸呈线性关系 | |
| CNN+transformer 作为 Unet的encoder,进行医学图像分割 | ||
论文笔记:Not All Images are Worth 16x16 Words: Dynamic Vision Transformers with Adaptive Sequence Length_UQI-LIUWJ的博客-CSDN博客 | Neurips 2021 | 将图形分成不同大小的token,token数量从小到大,由模型决定该使用多大token size的ViT | |
论文笔记:Unsupervised Night Image Enhancement: When Layer Decomposition Meets Light-Effects Suppression_UQI-LIUWJ的博客-CSDN博客 | 2022 ECCV | 夜间图像增强——抑制过曝,增强暗光 | |
论文笔记:Hierarchical Contrast for Unsupervised Skeleton-based Action Representation Learning_UQI-LIUWJ的博客-CSDN博客 | AAAI 2023 oral | 3D骨架姿势识别 使用对比学习 不同于传统的对比学习,论文使用了层次化的对比学习loss,通过时间域和空间域不同粒度的对比学习loss,共同进行优化 | |
论文笔记:Vision GNN: An Image is Worth Graph of Nodes-CSDN博客 | neurips 2022 | 首次将图神经网络用于视觉任务,同时能取得很好的效果 | |
论文略读:Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video-CSDN博客 | iclr 2024 oral reviewer评分 68888 | 自监督学习解锁了将预训练扩展到数十亿图像的潜力,因为不需要标注。但是,我们是否充分利用了数据?我们能更经济地使用数据吗? | |
论文略读:Window Attention is Bugged: How not to Interpolate Position Embeddings-CSDN博客 | iclr 2024 reviewer 打分 6666 | 在使用窗口注意力时对位置嵌入进行插值是错误的 |
9 知识蒸馏
论文名称 | 来源 | 主要内容 |
论文笔记:Asymmetric Temperature Scaling Makes Larger Networks Teach Well Again_UQI-LIUWJ的博客-CSDN博客 | Nuerips 2022 | 很多学者认为大的教师网络,并不能使得小的学生网络学习效果好 ——>temperature 过大的时候,导致教师网络输出像uniform-label,类别之间的差异性就没有了,仅仅起到了一个 label smoothing 的作用 ——>temperature 过小的时候,教师的输出结果像 hard-label,导致和正常分类损失相比没有什么额外的信息 本文通过将知识蒸馏损失函数分解,同时尽心理论分析,提出教师网络中正确的logit和错误的logit,使用的temperature应该不一样:正确的logit对应的τ应该大一些,错误的logit对应的tau应该小一些 |
论文笔记:Curriculum Temperature for Knowledge Distillation_UQI-LIUWJ的博客-CSDN博客 | AAAI 2022 | temperature自适应学:学生网络目标是减少KD loss,temperature 目标是增大KD loss 同时学的过程中增大temperature的权重,使得学生网络越来越难学 |
论文略读:Quantifying the Knowledge in a DNN to Explain Knowledge Distillation for Classification-CSDN博客 | 2022 TPAMI | 知识蒸馏和知识点的关系 |
论文略读:Data Distillation Can Be Like Vodka: Distilling More Times For Better Quality-CSDN博客 | iclr 2024 reviewer 评分 568 | 提出了渐进式数据集蒸馏(PDD)
|
10 多模态
论文名称 | 来源 | 主要内容 |
论文笔记:Learning Transferable Visual Models From Natural Language Supervision(CLIP)_UQI-LIUWJ的博客-CSDN博客 | CLIP 文本-图像对进行预训练, |
11 地震学
论文名称 | 来源 | 主要内容 |
论文笔记:PhaseNet: a deep-neural-network-based seismic arrival-time pickingmethod_UQI-LIUWJ的博客-CSDN博客 | 2018 Geophysical Journal International | Unet+地震预测(检测P波S波到达时间) |
12 对比学习
论文名称 | 来源 | 主要内容 |
论文笔记:SUPERVISED CONTRASTIVE REGRESSION_UQI-LIUWJ的博客-CSDN博客 | 2022 | 使用对比学习,用于辅助regression |
论文笔记:When Do Contrastive Learning Signals Help Spatio-TemporalGraph Forecasting?_UQI-LIUWJ的博客-CSDN博客 | 2022 sigspatial | 解决时空图预测+对比学习中的四个问题
|
论文速读:Do Generated Data Always Help Contrastive Learning?-CSDN博客 | iclr 2024 |
|
论文略读:Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hype-CSDN博客 | 2020 ICML | 对比学习可以work,是因为他优化了两个目标:
|
14 NLP
论文笔记:Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks-CSDN博客 | 2015 ACL 提出 tree-lstm,不同于LSTM只是用上一步神经元,Tree-LSTM使用了所有子节点的隐藏输出 |
14 NLP
论文笔记:Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks-CSDN博客 | Tree-LSTM 用到了所有子节点的隐藏输出 |
论文略读:CLEAR: Contrastive Learning for Sentence Representation-CSDN博客 | 结构和SimCLR类似,主要提出了四种数据增强构建负例句子的方法 |
论文略读:SimCSE: Simple Contrastive Learning of Sentence Embeddings-CSDN博客 | EMNLP 2021 两个很简单的NLP对比学习方式 |
15 半监督学习
论文略读:REALISTIC EVALUATION OF SEMI-SUPERVISED LEARN ING ALGORITHMS IN OPEN ENVIRONMENTS-CSDN博客 | iclr 2024 spotlight reviewer 评分 8888 提出了几个基于鲁棒性分析曲线(RAC)的鲁棒性指标,以实现SSL算法的公平和全面评估 建立了一个理论框架来研究开放环境中SSL算法的泛化性能和鲁棒性 |