SLAM研究方向避坑的几点建议

SLAM主要包括视觉SLAM和激光SLAM两个方面的内容,SLAM已经有近30年的历史,尤其是激光SLAM,以前主要应用在军事科学上,最近几年才转民用;视觉SLAM随着近年来计算机视觉的快速发展,视觉SLAM最近发展很热,不过与计算机视觉相比,还是属于计算机视觉中一个比较小的分支,相对来说工作也不太多。作为一个在实验室唯一做SLAM的踩过无数坑的人,最近终于逃出坑了,转做计算机视觉中图像处理相关内容,其中有各种原因,下面也将好好详细进行说一下。

首先,确定你是否读博士,如果不读博士,那就看看是否是985院校,实验室之前有没有师兄做,有没有老师带,据我了解,除非你天赋异禀,实验室经费充足,支持你购买器材,否则多半是半途而费。另外如果你老师既想让你做好实验,又想让你发表出色的论文,不用说,这种老师肯定不是一线搞科研的老师,劝你及时止损,不要做SLAM方向。购买硬件的话,激光SLAM的话买激光雷达,视觉SLAM的话买双目摄像头,如果老师只是说我们一定会买的,先写入下学期器材经费里面,暗示你可以先把前期工作做好,把你的硬件配置环境,以及最终实验的目的甚至中间的步骤全部都搞清楚,最后就差一个激光雷达或者双目摄像头,如果购买后即可完成数据的采集并发表出相关论文;我想说,你TMD玩我呢,什么都不买,还想让我做项目,实验,最后发的论文第一作者还是导师,最后还美其名曰成就学生,这种老师简直就太可怕了。

首先放一张SLAM的知识树,也就是SLAM学习过程中必备的内容;
SLAM学习树

深度学习视觉SLAM是一种将深度学习和视觉SLAM相结合的研究方向视觉SLAM(Simultaneous Localization and Mapping)是一种利用相机或其他传感器来实时构建环境地图并同时定位自身位置的技术。而深度学习是一种机器学习的方法,通过构建和训练深度神经网络模型来解决复杂的视觉和语言处理问题。 深度学习在视觉SLAM中的应用主要有以下几个方面。 首先,深度学习可以用于特征提取和描述子学习。传统的SLAM方法通常依赖于手工设计的特征来进行地图构建和定位,但是手工设计的特征容易受到环境变化的影响,而深度学习可以通过大规模数据的训练来学习具有不变性和鲁棒性的特征表示,从而提高SLAM系统的鲁棒性和稳定性。 其次,深度学习可以用于位姿估计和地图优化。传统的SLAM方法通常使用基于滤波器或图优化的方法来估计相机的位姿,并利用位姿估计结果来进行地图的更新和优化。而深度学习可以通过训练神经网络模型来预测相机的位姿,从而提高位姿估计的准确性和实时性。 此外,深度学习还可以用于SLAM系统的场景理解和物体识别。传统的SLAM方法通常只对环境进行地图构建和定位,而深度学习可以通过训练神经网络模型来实现对场景中物体的检测和识别,从而实现对环境的更加深入的理解。 总之,深度学习视觉SLAM是一项将深度学习与传统视觉SLAM相结合的研究方向,可以通过利用深度学习的强大能力来提高SLAM系统的鲁棒性、稳定性、准确性和实时性,并实现对环境的更加深入的理解。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值