这一节我们首先介绍下计算机视觉领域中常见的三个坐标系:图像坐标系,相机坐标系,世界坐标系。以及他们之间的关系。然后介绍如何使用张正友相机标定法标定相机。
图像坐标系:
理想的图像坐标系原点O1和真实的O0有一定的偏差,由此我们建立了等式(1)和(2),可以用矩阵形式(3)表示。
相机坐标系(C)和世界坐标系(W):
通过相机与图像的投影关系,我们得到了等式(4)和等式(5),可以用矩阵形式(6)表示。我们又知道相机坐标系和世界坐标的关系可以用等式(7)表示:
由等式(3),等式(6)和等式(7)我们可以推导出图像坐标系和世界坐标系的关系:
其中M1称为相机的内参矩阵,包含内参(fx,fy,u0,v0)。M2称为相机的外参矩阵,包含外参(R:旋转矩阵,T:平移矩阵)。
众所周知,相机镜头存在一些畸变,主要是径向畸变(下图dr),也包括切向畸变(下图dt)等。
上图右侧等式中,k1,k2,k3,k4,k5,k6为径向畸变,p1,p2为切向畸变。在OpenCV中我们使用张正友相机标定法通过10幅不同角度的棋盘图像来标定相机获得相机内参和畸变系数。函数为calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, rvecs, tvecs,flag)
objectPoints: 一组世界坐标系中的3D
imagePoints: 超过10张图片的角点集合
imageSize: 每张图片的大小
cameraMatrix: 内参矩阵
distCoeffs: 畸变矩阵(默认获得5个即便参数k1,k2,p1,p2,k3,可修改)
rvecs: 外参:旋转向量
tvecs: 外参:平移向量
flag: 标定时的一些选项:
CV_CALIB_USE_INTRINSIC_GUESS:使用该参数时,在cameraMatrix矩阵中应该有fx,fy,u0,v0的估计值。否则的话,将初始化(u0,v0)图像的中心点,使用最小二乘估算出fx,fy。
CV_CALIB_FIX_PRINCIPAL_POINT:在进行优化时会固定光轴点。当CV_CALIB_USE_INTRINSIC_GUESS参数被设置,光轴点将保持在中心或者某个输入的值。
CV_CALIB_FIX_ASPECT_RATIO:固定fx/fy的比值,只将fy作为可变量,进行优化计算。当CV_CALIB_USE_INTRINSIC_GUESS没有被设置,fx和fy将会被忽略。只有fx/fy的比值在计算中会被用到。
CV_CALIB_ZERO_TANGENT_DIST:设定切向畸变参数(p1,p2)为零。
CV_CALIB_FIX_K1,...,CV_CALIB_FIX_K6:对应的径向畸变在优化中保持不变。
CV_CALIB_RATIONAL_MODEL:计算k4,k5,k6三个畸变参数。如果没有设置,则只计算其它5个畸变参数。
首先我们打开摄像头并按下'g'键开始标定:
- VideoCapture cap(1);
- cap.set(CV_CAP_PROP_FRAME_WIDTH,640);
- cap.set(CV_CAP_PROP_FRAME_HEIGHT,480);
- if(!cap.isOpened()){
- std::cout<<"打开摄像头失败,退出";
- exit(-1);
- }
- namedWindow("Calibration");
- std::cout<<"Press 'g' to start capturing images!"<<endl;
- if( cap.isOpened() && key == 'g' )
- {
- <span style="white-space:pre"> </span>mode = CAPTURING;
- }
- if( (key & 255) == 32 )
- {
- image_size = frame.size();
- /* 提取角点 */
- Mat imageGray;
- cvtColor(frame, imageGray , CV_RGB2GRAY);
- bool patternfound = findChessboardCorners(frame, board_size, corners,CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE + CALIB_CB_FAST_CHECK );
- if (patternfound)
- {
- n++;
- tempname<<n;
- tempname>>filename;
- filename+=".jpg";
- /* 亚像素精确化 */
- cornerSubPix(imageGray, corners, Size(11, 11), Size(-1, -1), TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
- count += corners.size();
- corners_Seq.push_back(corners);
- imwrite(filename,frame);
- tempname.clear();
- filename.clear();
- }
- else
- {
- std::cout<<"Detect Failed.\n";
- }
- }
- for (int t=0;t<image_count;t++)
- {
- <span style="white-space:pre"> </span>vector<Point3f> tempPointSet;
- for (int i=0;i<board_size.height;i++)
- {
- <span style="white-space:pre"> </span>for (int j=0;j<board_size.width;j++)
- {
- /* 假设定标板放在世界坐标系中z=0的平面上 */
- Point3f tempPoint;
- tempPoint.x = i*square_size.width;
- tempPoint.y = j*square_size.height;
- tempPoint.z = 0;
- tempPointSet.push_back(tempPoint);
- <span style="white-space:pre"> </span>}
- }
- object_Points.push_back(tempPointSet);
- }
- calibrateCamera(object_Points, corners_Seq, image_size, intrinsic_matrix ,distortion_coeffs, rotation_vectors, translation_vectors);
- std::cout<<"每幅图像的定标误差:"<<endl;
- fout<<"每幅图像的定标误差:"<<endl<<endl;
- for (int i=0; i<image_count; i++)
- {
- vector<Point3f> tempPointSet = object_Points[i];
- /**** 通过得到的摄像机内外参数,对空间的三维点进行重新投影计算,得到新的投影点 ****/
- projectPoints(tempPointSet, rotation_vectors[i], translation_vectors[i], intrinsic_matrix, distortion_coeffs, image_points2);
- /* 计算新的投影点和旧的投影点之间的误差*/
- vector<Point2f> tempImagePoint = corners_Seq[i];
- Mat tempImagePointMat = Mat(1,tempImagePoint.size(),CV_32FC2);
- Mat image_points2Mat = Mat(1,image_points2.size(), CV_32FC2);
- for (int j = 0 ; j < tempImagePoint.size(); j++)
- {
- image_points2Mat.at<Vec2f>(0,j) = Vec2f(image_points2[j].x, image_points2[j].y);
- tempImagePointMat.at<Vec2f>(0,j) = Vec2f(tempImagePoint[j].x, tempImagePoint[j].y);
- }
- err = norm(image_points2Mat, tempImagePointMat, NORM_L2);
- total_err += err/= point_counts[i];
- std::cout<<"第"<<i+1<<"幅图像的平均误差:"<<err<<"像素"<<endl;
- fout<<"第"<<i+1<<"幅图像的平均误差:"<<err<<"像素"<<endl;
- }
- std::cout<<"总体平均误差:"<<total_err/image_count<<"像素"<<endl;
- fout<<"总体平均误差:"<<total_err/image_count<<"像素"<<endl<<endl;
- std::cout<<"评价完成!"<<endl;
- std::cout<<"开始保存定标结果………………"<<endl;
- Mat rotation_matrix = Mat(3,3,CV_32FC1, Scalar::all(0)); /* 保存每幅图像的旋转矩阵 */
- fout<<"相机内参数矩阵:"<<endl;
- fout<<intrinsic_matrix<<endl<<endl;
- fout<<"畸变系数:\n";
- fout<<distortion_coeffs<<endl<<endl<<endl;
- for (int i=0; i<image_count; i++)
- {
- fout<<"第"<<i+1<<"幅图像的旋转向量:"<<endl;
- fout<<rotation_vectors[i]<<endl;
- /* 将旋转向量转换为相对应的旋转矩阵 */
- Rodrigues(rotation_vectors[i],rotation_matrix);
- fout<<"第"<<i+1<<"幅图像的旋转矩阵:"<<endl;
- fout<<rotation_matrix<<endl;
- fout<<"第"<<i+1<<"幅图像的平移向量:"<<endl;
- fout<<translation_vectors[i]<<endl<<endl;
- }
- std::cout<<"完成保存"<<endl;
- fout<<endl;
具体的代码实现和工程详见:Calibration
运行截图:
下一节我们将使用RPP相机姿态算法得到相机的外部参数:旋转和平移。
==============================================================================================
2015/11/14补充:
所有分辨率下的畸变(k1,k2,p1,p2)相同,但内参不同(fx,fy,u0,v0),不同分辨率下需要重新标定相机内参。以下是罗技C920在1920*1080下的内参:
http://blog.csdn.net/aptx704610875/article/details/48914043