【2023.7.20】中国SIGGRAPH论文预报告会一

文章涵盖了从单张图像中恢复高分辨率SVBRDF的技术,强调轻量化设置和提高CNN效率;研究了结合神经网络的路径引导方法,以实现参数化特征与轻量级网络的融合;介绍了实时像素精确渲染大型NURBS模型的弹性细分技术,提高速度和精度;探讨了弱压缩风洞测试设施的虚拟建模,以适应动画模拟;以及实时风格化人物动作过渡方法,确保质量和可控性。
摘要由CSDN通过智能技术生成

渲染

2 Ultra-high resolution SVBRDF Recovery from a single Image

1)已有方法缺点:内存消耗, cnn;High-resolution cropping速度慢

2)目标:4K,Light-weight setup(只需要手机拍摄的照片即可,不需要专业设备)

3)主要思路:

cnn获取全局特征,分割提取局部特征。

首先resampling降低输入精度,提高cnn运行速度。然后通过网络内层的material vision transformer提取全局特征,解决局部特征的接缝问题(如左右粗糙度不一致问题)。

4)效果:高光和漫反射效果解耦合,需要8g左右内存

5)局限性:光泽区域面积大的情况处理不好。忽略手机镜头透视对输入图片的影响。

6)未来工作:把工作实现到复杂几何物体上。该工作的主要问题,物体自身遮挡的部分角度的入射光、出射光,改变了BRDF。

3 Neural Parametric Mixtures for Path Guiding

1)目标:保留传统方法参数化特征的同时、结合神经网络轻量化特点

2)训练目标:最小化目标分布和预测分布的KL散度。其中KL散度的积分部分通过蒙特卡洛方法估计。

3)内容:为了学习高频输入的细节,同时保持网络的轻量级特征。高频输入被划分为高频网格拼接,并映射到高频空间。只增加10%的开销。

4)缺点:网格只能均匀分割,不能自适应;只有固定数量输出

4 ETER:Elastic Tessellation for Real-Time Pixel-Accurate Rendering of Large-Scale NURBS Models:曲面的裁切渲染

1)Motivation:

曲面在大型工业软件中不能直接渲染,需要先采样、生成mesh。不同精度切换速度。裁切接缝处,在不同预处理时间长、内存占用大。

2)目标:实时裁切、实时渲染

3)内容:

(1)裁切:把pixel error改进为模型error.

(2)采样策略:半均匀策略。具体计算结合tensor core底层运算。

(3)Crack filling:接缝处两侧网格精度不同,这类点在屏幕上会形成闪烁的白点。

(4)渲染:处理像素级别的小三角形,使用类似nano的软光栅方法。

4)结果:相比硬件分割,加速3-16倍。

物理仿真与模拟

1 Building a Virtual Weakly-compressible Wind Tunnel Testing Facility

1)motivation:工业界一般计算稳态分布,但是不能用于动画模拟。

2)内容:使用并改进Lattice Boltzmann method:(navier-stokes equation中的nonlinear项保证了流体的不可压性,但是使计算效率下降)。该方法只在局部位置考虑非线性,周围点用线性方法计算。这样的计算便于并行计算和湍流模拟。

3)目标:精度、复杂几何

2 DreamFace: Progressive Generation of Animatable 3D Faces under Text Guidance

1)背景:三套穹顶系统:2)实现视频重打光,缺点是不能兼容常用的渲染器。3)带Brdf、动态绑定、微表情的数字人材质资产

Styleclip,Avatar clip的资产不能直接使用(衣服和人体绑定、lighting baked到漫反射中)

2)pipeline:

几何包含两个步骤,首先根据文字选择合适的参数化人脸模型(HACK)用于加速。第二步用stable diffusion+sds监督对模型雕刻。

材质利用三部分数据(南京大学的开源数据facescape)生成。为了提高皮肤材质的多样性,用finetune前的模型(人种多样性)和finetune后(更了解皮肤的特点)的共同优化。然后对生成的材质上采样提高精度。最后利用驱动模块生成不同模型驱动的微动作(基于2021siggraph工作+微表情数据+更大4d驱动数据提高模型泛化性)。

3)结果:生成4K精度、可驱动的gameready模型。算法的网页版本chatAvatar,30s左右生成模型。

3 StyleAvatar: Real-time Photo-realistic Portrait Avatar from a Single Video

1)输入:2-5min视频,精度1K以上,视频内包括丰富的表情变化。

2)Pipeline:

根据输入视频,利用3DMM tracking 的参数化方法实现对资产的控制。(引用作者cvpr工作,该方法主要包含两个步骤,检测特征点+求解优化问题。)

结合styleGAN和UNet特点,构建styleUnet,提取特征。

分解视频为脸部、背景、非面部,最后用对抗训练的判别器结合三部分特征。

3)缺点:嘴部的内部结构不清楚、视频驱动人和输出的数字资产的体型差距较大时,输出结果的视频中人的体型会发生变化。

4 PoseVocab: Learning Joint-structured Pose Embeddings for Human Avatar Modeling

1)已有工作:NeRF based的人体姿势生成方法,一般是将人体姿势编码为特征,特征作为条件输入nerf。因此对人体姿势编码的方法非常重要。

相关工作的编码包括两种方法:1)Per-frame code 2)Pose vector,normal vector再输入nerf。动态场景的编码方法不能直接应用在人体中,因为人体的空间维度比时间维度更dense。

2)Pipeline:首先查询pose库,然后增加Global embedding、joint vector。三维joint vector主要是用于提高global embedding的泛化性。

3)缺点:不能处理衣物随人体的变动。精度有待提高。

5 RSMT:real-time stylized motion transition for characters

1)目标:实时给定框架的动画过渡帧风格化生成。速度、可控性、质量。

2)已有工作:间补动画主要在定位关键帧,风格化主要在处理语义相似的视频。

3)Pipeline:motion manifiold model控制视频的高质量生成,motion sampler负责在监督信号下生成有特色的动作。

4)结果:推理速度30s/per frame。训练数据集:100style。

5)缺点:只能保持风格,而不能转变风格。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值