20230406 transformer 多模态 视觉大模型

一.借鉴网站

APlayBoy - 知乎

Hugging Face – The AI community building the future.

https://paperswithcode.com/sota

机器之心SOTA!模型

ModelScope - 模型列表页

论文: 

http://xxx.itp.ac.cn/

https://github.com/amusi/CVPR2023-Papers-with-Code
https://github.com/amusi/ICCV2023-Papers-with-Code
https://github.com/amusi/ECCV2022-Papers-with-Code

The Methods Corpus | Papers With Code

 传统多模态模型简单总结 - 知乎

https://huggingface.co/docs/transformers/model_doc/clip

Huggingface 超详细介绍 - 知乎

https://modelscope.cn/models?tasks=[object%20Object]:body-3d-keypoints&type=cv

LLM/ChatGPT与多模态必读论文150篇(已更至第101篇)_chatgpt相关论文-CSDN博客

大模型系统学习:llm-course,狂飙13.5K Star,GitHub上最全的开源大模型教程 - 知乎

万字长文带你全面解读视觉大模型 - 知乎

评测:AI 大模型排行榜,正式发布! 

二.DINO 

1.DINO(Distillation via Noisy-Labels)模型是一种基于自监督学习的视觉表示学习方法,它主要依靠教师-学生(Teacher-Student)架构进行训练。下面是DINO模型的大致算法实现过程:

  1. 数据预处理

    • 对输入图像进行数据增强,生成两个视图(View1和View2),这两个视图是对同一张原始图像的不同变换,例如随机裁剪、翻转、色彩变换等。
  2. 模型结构

    • 设定两个相同的模型:教师网络(Teacher)和学生网络(Student),它们都采用Transformer或者类似结构,如Vision Transformer (ViT)。
  3. 特征提取

    • 分别将两个视图输入到教师网络和学生网络中,提取出对应的特征表示。
  4. 教师网络更新

    • 教师网络的参数是对学生网络参数的指数移动平均(Exponential Moving Average, EMA),在训练过程中,教师网络的参数更新较为保守,以维持稳定的学习信号。
  5. 对比学习

    • 计算学生网络对View1产生的特征向量与教师网络对View2产生的特征向量之间的 cosine相似度。
    • 通过对比学习 loss,让学生网络模仿教师网络对同一张图片不同视图的特征表示,促使两个网络学习到一致的特征表示。
  6. 正则化与噪声标签

    • DINO模型通过引入噪声标签(noisy labels)的概念,即在网络内部生成伪标签,来增强模型对噪声和多样性的适应能力。
    • 使用归一化温度softmax函数对教师网络的特征向量进行处理,模拟软标签,作为学生网络学习的目标。
  7. 训练过程

    • 学生网络的训练目标是既要模仿教师网络的特征表示,又要保持不同图片之间的特征差异性。
    • 更新学生网络的参数,最小化对比学习loss以及可能的正则化loss。
  8. 迭代训练

    • 重复以上步骤,不断迭代训练,直到模型收敛。

通过这种训练方式,DINO模型能够在没有人工标注的情况下学习到强大的视觉特征表示,这些特征可以用于下游的多项视觉任务,如图像分类、目标检测等。

2.DINO(Distillation with Noisy-Labels)和DINOv2是在自监督学习领域中的连续迭代版本,它们都采用了对比学习和教师-学生机制来训练无监督视觉模型。尽管两者的核心思想类似,但DINOv2通常会在以下几个方面有所改进或变化:

  1. 性能优化

    • DINOv2可能针对DINO的基础架构进行了优化,提升了模型在各种视觉任务上的性能表现,比如提高了模型在标准基准测试上的准确性或扩展了模型对于复杂视觉场景的理解能力。
  2. 算法改进

    • 可能引入了新的训练策略、损失函数改进或是对模型架构的调整,以促进更好的自监督学习效果和特征表达能力。
  3. 知识蒸馏

    • DINOv2可能进一步强化了知识蒸馏的过程,例如,更有效地利用大型预训练模型的知识来指导小型模型的训练,使得小型模型也能获得类似的表征学习能力。
  4. 数据效率与泛化能力

    • DINOv2可能在提高数据利用效率、减少训练资源需求以及提升模型在未见过的数据上的泛化能力方面做了针对性改进。
  5. 额外功能或应用场景

    • 随着技术发展,DINOv2可能会添加新的功能特性,比如更适用于特定任务的微调策略,或者是拓展至其他应用场景,如跨模态学习、实时推理等。

由于具体细节依赖于实际发布的论文和技术文档,上述区别是基于一般迭代升级的常见方向。要获得DINO与DINOv2之间精确的技术差异,请查阅相关的官方论文或GitHub项目页面以获取最新和详尽的说明。

全网最强 DINOv2 论文解读 - 知乎

从 DETR 到 DINO 的进化过程 - 知乎

DINOv2:无需微调,填补 SAM 的空白,支持多个下游任务 - 知乎

DINOv2 by Meta AI

Search · DINOv2 · GitHub

检测:

https://github.com/IDEA-Research/GroundingDINO

三.自监督学习大模型

自监督学习修炼之MoCov1与MoCov2 - 知乎

四.DEIT

https://github.com/facebookresearch/deit/tree/colab

DEIT(Data-efficient Image Transformers)并非一个检测模型,而是用于图像分类的模型,它基于Vision Transformer(ViT)架构,但更注重于数据效率。不过,我们可以讨论一下DEIT在图像分类任务上的实现过程,因为检测模型如DETR(DEtection TRansformer)也是基于Transformer结构的,其基本思路有一定的相似性。

DEIT模型算法实现过程概述如下:

  1. 数据预处理

    • 首先,将输入图像分割成多个固定大小的patches(块),每个patch被线性嵌入成一个向量。
    • 将这些嵌入向量拼接在一起,形成一个1D序列,类似于文本中的token序列。
  2. 位置编码

    • 为了保留图像的二维结构信息,为每个patch向量附加一个位置编码,该编码反映了patch在原始图像中的位置。
  3. Transformer编码器

    • 将带有位置编码的patch序列送入Transformer的编码器,编码器通过多层自注意力机制学习patch之间的关系和全局上下文信息。
  4. 分类头

    • 编码器输出的序列经过一层或多层全连接层(分类头),生成对应于每个类别的logits(概率分布)。
  5. 训练过程

    • 使用交叉熵损失函数进行训练,模型的目标是学习如何根据输入图像的patch序列预测正确的类别标签。
    • DEIT特别注重在有限训练数据上的表现,可能会使用一些数据增强技术,以及特定的训练策略来提高模型的数据效率。

在目标检测任务中,DETR等模型会在此基础上引入一个解码器部分,并利用一个特殊的目的token(如CLS token)来生成检测框和类别标签,而DEIT专注于图像分类任务,不涉及检测框的生成。如果你感兴趣的是DETR这样的检测模型,其过程会更为复杂,包括了预测固定数量的物体框和类别标签等步骤。

DEIT(Data-efficient Image Transformers)模型在训练时采用了一种适应于Transformer架构的数据结构。具体来说,它遵循以下流程:

  1. Patch Embedding:

    • 首先,输入的RGB图像会被分割成若干个小的非重叠 patches(通常为正方形)。
    • 每个patch被线性投影(嵌入)成一个低维向量,这一过程类似词嵌入在自然语言处理中的作用。
  2. Sequence Formation:

    • 所有patch嵌入向量按照它们在原始图像中的位置顺序排列,形成一个1D序列,就像文本中的单词序列一样。
  3. Positional Encoding:

    • 由于Transformer对输入序列的位置信息没有内在感知能力,因此,每个patch嵌入向量都会附加一个位置编码,以确保模型能捕捉到图像的空间布局信息。
  4. Transformer Encoder:

    • 这个形成的序列随后被馈送到Transformer的编码器模块中,编码器由多层自注意力和前馈神经网络组成,用于捕获patch间的长程依赖关系和全局上下文。
  5. Distillation Token (如果适用):

    • 在DEIT中,为了优化数据效率并改进训练过程,可能还会引入一个额外的“蒸馏Token”,它可以聚合整个图像的信息,并与教师模型的输出进行比较,从而通过知识蒸馏技术来指导学生模型的学习。
  6. Training Process:

    • DEIT在训练时使用标准的监督学习方法,即在ImageNet等大规模图像分类数据集上,以每个图像对应的类别标签作为监督信号。
    • 特别地,DEIT关注于在有限的训练样本上达到良好的性能,可能运用数据增强、蒸馏技术和其他训练策略来提升模型的数据效率。

总之,DEIT模型训练时的数据结构是一种转换后的、适合于Transformer处理的序列化形式,其中包含了空间位置信息,并通过自注意力机制来提取图像特征和进行分类。

五.DETR:

DETR(DEtection TRansformer)模型在训练时采用了一种新颖的数据结构和训练方式,主要是为了实现端到端的目标检测。以下是DETR模型训练时的数据结构和流程:

  1. 数据预处理

    • 输入的RGB图像首先会被分割成多个patches(通常使用卷积神经网络提取特征图),然后将这些特征图展平成1D向量序列。
    • 与此同时,创建一组固定数量的“object queries”(目标查询向量),它们作为额外的序列元素,用于预测图像中的目标边界框和类别。
  2. 位置编码

    • 类似于BERT等Transformer模型,DETR也为图像patches和object queries添加了位置编码,以便模型理解它们在图像中的位置信息。
  3. Transformer结构

    • 将图像patches和object queries组成的序列输入到Transformer模型中。Transformer包含编码器和解码器部分。
    • 编码器负责处理图像patches序列,学习图像的全局上下文信息。
    • 解码器通过自注意力机制,结合编码器的输出和object queries,生成一组边界框坐标和类别预测。
  4. 集合预测

    • DETR模型的输出不是连续的边界框预测,而是一个有限长度的有序列表,列表中的每个元素代表一个可能的目标,并包含其类别和坐标信息。
    • 使用 Hungarian 匹配算法将预测结果与 ground truth 进行匹配,以计算训练损失。
  5. 损失函数

    • DETR使用了一种称为“集合损失”(Set Prediction Loss)的方法,它包括 bounding box 的L1损失和类别预测的交叉熵损失,同时加入了一种匹配成本来优化预测结果与真实标签的匹配。
  6. 训练过程

    • 在训练期间,模型的目标是通过优化上述损失函数,使得预测的边界框和类别尽可能接近真实的标注信息。

总之,DETR模型通过Transformer结构处理图像和object queries的序列化表示,并利用集合预测和匈牙利匹配算法优化训练过程,从而实现了一种全新的、无需 anchor boxes 和非极大值抑制(NMS)的目标检测方法。

六.CLIP

1.CLIP VIT32和RN50是OpenAI发布的两种图像编码器,用于图像和语言的对抗预训练。两者的主要区别在于:1. 图像模型不同。CLIP VIT32 使用 Vision Transformer(ViT)作为图像模型,它是一种基于Transformer的图像分类网络。CLIP RN50 使用ResNet50作为图像模型,是一种基于CNN的图像分类网络。2. 参数量不同。CLIP VIT32 的参数量较小,只有32M,适合在有限资源环境下使用。CLIP RN50 的参数量较大,为25G,需要更强大的GPU支持。3. 精度不同。在相同的预训练数据和 Fine-tuning 设置下,CLIP RN50 的精度总体优于 CLIP VIT32,特别是在图像分类上。这是由于ResNet50作为图像分类模型,具有更强的分类能力。4. 发布时间不同。CLIP VIT32 于2020年8月发布,CLIP RN50 于2021年1月发布,CLIP RN50 基于CLIP VIT32进行改进而产生。除以上之外,CLIP VIT32和RN50在其他方面类似:1. 都使用Transformer实现文本编码。2. 都在400万个图像-文本对上进行对抗预训练。3. 都具有Zero-shot分类、图像/语言检索和语义匹配分析的功能。4. 都具有简单和通用的结构,易于在新数据集上Fine-tuning。

重要:

基于CLIP实现的以文搜图 - 飞桨AI Studio

GitHub - yzhuoning/Awesome-CLIP: Awesome list for research on CLIP (Contrastive Language-Image Pre-Training).

GitHub - mlfoundations/open_clip: An open source implementation of CLIP.

GitHub - openai/CLIP: CLIP (Contrastive Language-Image Pretraining), Predict the most relevant text snippet given an image

自动学习: 

Prompt工程:自动学习Clip的Prompt - 知乎

 中文CLIP
ModelScope 魔搭社区

clip 文本Tokenizer和embedding的区别

CLIP(Contrastive Language-Image Pretraining)模型中的文本Tokenizer和文本嵌入(embedding)是两个不同的概念,它们在多模态预训练中起着不同的角色。以下是它们的区别:

文本Tokenizer: 文本Tokenizer是一个处理文本数据的工具,用于将连续的文本序列分割成更小的单元,通常是单词、子词或字符。Tokenizer的主要目标是将原始文本转换为一个由标记组成的序列,以便模型能够理解和处理。在CLIP中,文本Tokenizer的任务是将自然语言文本分割成可供处理的标记,并将这些标记映射到一个词汇表中,为每个标记生成一个唯一的编码。这些编码可以用于生成文本嵌入向量。

文本嵌入(Embedding): 文本嵌入是通过将离散的文本标记映射到连续的、低维的向量空间中,以便于计算机进行数值计算和处理的技术。每个文本标记都映射为一个嵌入向量,这个向量在嵌入空间中表示了该标记的语义信息。文本嵌入通常是密集的向量,其中相似的文本标记在嵌入空间中也比较接近。在CLIP中,文本嵌入是用于表示文本的数值向量,用于与图像嵌入向量在共享的多维空间中进行匹配和比较。

总之,文本Tokenizer是一个预处理工具,用于将原始文本分割为可处理的标记,而文本嵌入是一个表示技术,将这些标记映射到低维向量空间中,以便进行多模态任务中的图像和文本匹配等操作。

3.

CLIP图像编码resnet50和transformer区别

CLIP (Contrastive Language-Image Pre-training) 是一个结合了图像和文本的跨模态预训练模型,它通过对比学习的方式使模型学会将图像与相关的描述性文本对齐。在 CLIP 中,图像编码器可以采用不同的架构,包括基于ResNet50或Transformer的设计。

ResNet50作为图像编码器:

  • ResNet50是深度残差网络的一种变体,包含50层,其核心特点是使用残差块来解决深层神经网络中的梯度消失和爆炸问题。
  • 在CLIP中,ResNet50通常被用来提取图像特征。它是一个卷积神经网络(CNN),擅长捕捉局部特征并进行层次化的抽象表示,尤其适合于图像识别和分类任务。

Transformer作为图像编码器(ViT, Vision Transformer):

  • ViT是一种将Transformer应用于图像领域的结构,它首先将图像分割成一系列固定大小的 patches,然后将这些patches线性投影为向量序列,并加上位置编码,以便模型理解patch之间的相对或绝对位置关系。
  • 在CLIP中,如果使用Transformer作为图像编码器,它可以提供全局注意力机制,即每个patch都能够与图像中其他所有patch相互作用,这样模型可以从全局视角捕获上下文信息,而不仅仅是局部特征。
  • 与ResNet相比,Transformer在处理长距离依赖时具有优势,但可能需要更多的计算资源和更大的数据集来训练以达到最佳性能。

总结来说,在CLIP中,ResNet50图像编码器更侧重于局部特征表达,适合于计算机视觉传统任务;而Transformer(如ViT)图像编码器则能够从全局视角捕捉图像特征,这在处理需要理解和推理全局语境的任务时可能更为有效。

七.GLIP:

在计算机视觉和自然语言处理领域,"grounding"(接地)这个概念最早源于认知科学,它是指符号或词语与现实世界实体或概念之间的对应关系,即词汇或表述与它们所指代的对象或事件建立起联系的过程。在人工智能中,grounding意味着模型需要理解文本中的描述并将其准确地映射到视觉场景中的相应元素上。

在GLIP(Grounded Language-Image Pre-training)模型中,"grounding"这一名词的引用更加直接,它特指模型能够将文本指令或问题与图像中的特定区域(即像素级)相关联的能力。GLIP通过预训练来学习语言和图像之间的这种精准对应关系,使得模型在面对下游任务如图像标注、视觉问答等时,能够有效地将文本信息与图像中的对象、动作或场景属性精确匹配,也就是所谓的“视觉-语言对齐”(Visual-Linguistic Alignment)或“定位语义”(Phrase Grounding)。

十分钟解读GLIP:Grounded Language-Image Pre-training - 知乎

多模态问答模型论文大全:

GitHub - BradyFU/Awesome-Multimodal-Large-Language-Models: :sparkles::sparkles:Latest Papers and Datasets on Multimodal Large Language Models, and Their Evaluation.

八. SAM

SAM模型详解 - 知乎

Segment Anything | Meta AI

GitHub - IDEA-Research/Grounded-Segment-Anything: Marrying Grounding DINO with Segment Anything & Stable Diffusion & BLIP - Automatically Detect , Segment and Generate Anything with Image and Text Inputs

自动标注

使用Segment Anything(SAM)模型进行自动标注_咚咚锵咚咚锵的博客-CSDN博客

https://github.com/IDEA-Research/Grounded-Segment-Anything

SAM小模型 

https://github.com/ChaoningZhang/MobileSAM

九.TAM

十、GPT

一文读懂ChatGPT模型原理 - 知乎

LLaVa原理及在线演示 - 知乎

AI绘画能力的起源:从VAE、扩散模型DDPM、DETR到ViT/Swin transformer_vq-vae多模态-CSDN博客

从文本创建艺术,AI图像生成器的数据集是如何构建的_整数智能AI研究院的博客-CSDN博客

GPT搭建使用

MiniGPT-4实现原理及其核心BLIP2模型实践:从代表性图文对数据集、BLIP2模型结构到调用实践

GitHub - modelscope/modelscope: ModelScope: bring the notion of Model-as-a-Service to life.

图像生成和图像解释

GitHub - lucidrains/DALLE2-pytorch: Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis neural network, in Pytorch AIGC技术与应用全解析_cn--萍诚1号的博客-CSDN博客

十一.stable diffusion

对普通人来说,Stable diffusion 和 Midjourney 怎么选?他们有什么区别? - 知乎

https://github.com/AUTOMATIC1111/stable-diffusion-webui

DOKCER_FILE=stable-diffusion:webui

SEVER_NUM=03
PORT=9003
DEVICE=1

DOKCER_NAME=stable-diffusion-webui-${SEVER_NUM}


OUTPUT=/algorithm2/aigc/sd-webui/output/server${SEVER_NUM}
mkdir -p $OUTPUT

docker run -it -d \
    --name $DOKCER_NAME \
    --gpus device=${DEVICE} --rm --net=host \
    --shm-size=24g \
    -v /algorithm2/xuxiaoqiang/AIGC/openmodel:/openmodel \
    -v $OUTPUT:/output \
    $DOKCER_FILE \
    sh -c "cd /home/server/stable-diffusion-webui && bash ../env.sh && python3.9 webui.py --listen --xformers --port ${PORT}"

Stable Diffusion 的技术原理是什么? - 知乎

十二.Transformer 

如何从浅入深理解transformer? - 知乎

1.出现了一些基于自监督的方法,这包括基于对比学习的方法如MoCo和SimCLR,和基于图像掩码的方法如MAE和BeiT  
2、Transformer结构及其应用详解--GPT、BERT、MT-DNN、GPT-2 - 知乎

3.

"Decoder-only" 和 "Encoder-Decoder" 是Transformer模型的两种不同架构,它们用于不同类型的序列处理任务。以下是它们之间的主要区别:

  1. Decoder-Only 模型

    • "Decoder-only" 模型只包括解码器部分,没有编码器。这意味着它只处理生成任务,如文本生成或图像生成,而不涉及输入序列的编码。
    • 解码器在这种情况下通常包括多个层叠的解码器层,每个层都包括自注意力机制和前馈神经网络。解码器从一个初始的"起始符号"(例如,<start>标记)开始生成序列,并逐步生成序列的下一个元素,直到生成结束标记(例如,<end>标记)或达到最大长度。
  2. Encoder-Decoder 模型

    • "Encoder-Decoder" 模型包括编码器和解码器两个部分,通常用于处理翻译、生成对话、图像到文本等任务。编码器负责将输入序列编码为上下文感知的表示,而解码器使用这个表示生成目标序列。
    • 编码器和解码器都包括多个层叠的结构,包括自注意力机制和前馈神经网络。解码器还包括编码器-解码器注意力机制,以对齐输入序列和输出序列之间的信息。

总的来说,"Decoder-only" 模型专注于生成任务,例如文本生成或图像生成,而没有编码输入序列的能力。相比之下,"Encoder-Decoder" 模型用于处理输入和输出之间有显著关联的序列任务,例如翻译任务,其中编码器用于理解源语言文本,解码器用于生成目标语言文本。

选择哪种架构取决于任务的性质。如果你只需要进行生成任务,那么可以选择"Decoder-only" 模型。如果任务涉及将一个序列转化为另一个序列,例如翻译或生成对话,那么"Encoder-Decoder" 模型可能更适合。

5.QKV

当谈论 Transformer 模型的 QKV(Query、Key、Value)时,你可以将其想象成一种机制,用于处理信息并确定在模型中哪些部分需要关注和与输入数据的哪些部分产生关联。

  1. 查询(Query)就像你在寻找答案的问题。它表示模型要关注的内容,类似于你提出的问题。

  2. 键(Key)就像是问题的关键词或提示。它帮助模型找到与查询相关的内容。这相当于你在文本中寻找问题的答案时所关注的词语或短语。

  3. 值(Value)是实际的答案或信息。这是模型从输入数据中提取出来的内容,它们与查询和键的相关性一起用来生成最终的答案或输出。

总之,QKV 是 Transformer 模型用来处理信息和构建上下文理解的机制。查询帮助模型提出问题,键帮助模型找到问题的关键内容,值则提供了实际的答案或信息。通过将这些元素一起使用,Transformer 可以在各种自然语言处理任务中表现出色,例如机器翻译、文本生成和问答。

Transformer 使用 QKV(Query、Key、Value)是为了实现自注意力机制(Self-Attention Mechanism),这是 Transformer 模型中非常重要的组成部分。以下是 QKV 在 Transformer 中的作用和重要性:

  1. 自注意力机制:自注意力机制允许模型在处理输入序列时,动态地确定不同元素之间的关联程度。它使模型能够自适应地关注输入序列中的不同部分,而不是像传统的循环神经网络(RNN)那样固定窗口或固定步骤地处理序列。QKV 是自注意力机制的关键组件。

  2. 捕捉长距离依赖:自注意力机制能够有效地捕捉输入序列中的长距离依赖关系,这对于自然语言处理等任务非常重要。QKV 允许模型比较不同元素之间的相似度,从而确定它们之间的依赖关系,无论这些元素在输入序列中距离多远。

  3. 并行计算:Transformer 模型中的自注意力机制可以进行高度并行计算,因为每个元素的查询、键和值可以同时处理,而不必按顺序进行。这有助于加速训练和推理,使 Transformer 模型在大规模数据上表现出色。

  4. 适用于各种任务:QKV 可以应用于各种自然语言处理任务,如机器翻译、文本生成、问答等。它们不仅适用于文本数据,还可以用于其他类型的序列数据,如时间序列、图像序列等。

总之,QKV 在 Transformer 中的使用是为了实现自注意力机制,这一机制使得 Transformer 能够处理输入序列中的复杂关系,并在各种自然语言处理任务中表现出色。自注意力机制的灵活性和并行性使得 Transformer 成为深度学习领域的重要里程碑,并推动了自然语言处理领域的发展。

6.

Transformer 和循环神经网络(RNN)是两种不同类型的神经网络架构,它们有许多重要区别,包括以下几点:

  1. 结构差异:

    • RNN:RNN 是一种顺序式神经网络,通常用于处理序列数据,如文本或时间序列。RNN 的结构包括一个循环单元,将当前时间步的输入与先前时间步的隐藏状态相结合,以便在序列中传递信息。
    • Transformer:Transformer 是一种基于自注意力机制的神经网络架构,它不依赖于序列的顺序处理。Transformer 使用多头自注意力机制来处理输入序列,允许模型同时关注序列中的所有元素,这使得它能够捕捉长距离依赖关系。
  2. 并行计算:

    • RNN:RNN 的顺序性导致时间步之间的依赖性,这限制了并行计算。在训练和推理中,难以充分利用现代硬件的并行性。
    • Transformer:Transformer 中的自注意力机制允许并行计算,因为每个元素的查询、键和值可以同时处理。这提高了模型的计算效率,使得 Transformer 适用于大规模数据和加速硬件。
  3. 长距离依赖:

    • RNN:RNN 对于长距离依赖关系的建模有一定限制,因为它们的信息传递是通过时间步骤顺序进行的,随着序列长度的增加,梯度消失或梯度爆炸问题可能会出现。
    • Transformer:Transformer 能够更有效地捕捉长距离依赖关系,因为它可以同时考虑输入序列中的所有元素,而不受序列长度的限制。
  4. 适用领域:

    • RNN:RNN 在处理顺序数据时表现出色,如语言建模、文本生成和语音识别。
    • Transformer:Transformer 在自然语言处理领域表现出色,尤其是在机器翻译、文本生成、问答和语言理解任务中。它还适用于其他序列数据,如图像处理、时间序列分析和推荐系统。

总之,Transformer 和 RNN 在结构、并行性、处理长距离依赖和适用领域等方面存在显著的区别。Transformer 的自注意力机制使其成为处理各种自然语言处理任务的强大工具,同时也在其他领域取得了成功。

7.

多头自注意力(Multi-Head Self-Attention, MHSA)确实具有全局聚合的能力,这是其在处理序列数据时的核心特性之一。在Transformer架构中,MHSA允许模型在处理一个序列时考虑序列中所有位置的信息,而非仅限于局部上下文。

具体来说,在MHSA中,输入序列经过三个不同的线性变换分别产生Query、Key和Value矩阵。对于每一个位置的Token,其对应的Query会与所有位置的Key做点积运算并除以一个缩放因子(通常为sqrt(d_k)),然后通过softmax函数归一化得到注意力权重分布。这个权重分布反映了模型对序列中其他所有位置的注意力程度。

全局聚合体现在以下步骤:

  1. 计算注意力得分:通过Query与Key的点积运算,模型计算出一个关于整个序列的注意力得分矩阵,这个矩阵包含了序列中任意两个位置之间的相关性评分。
  2. 加权求和:根据上述得分矩阵得到的权重分布,模型对Value矩阵进行加权求和,这意味着每个位置的输出值是由整个序列中其他位置的信息按注意力权重整合而成的。
  3. 多头处理:MHSA并行执行多个独立的注意力头,每个头负责学习输入序列的不同子空间特征,最后将各个头的输出拼接起来并通过另一个线性层(组合层)进行融合,实现了从不同视角对全局信息的综合理解。

因此,通过多头自注意力机制,模型能够在每个时刻的计算中,对输入序列进行全局的信息交互和聚合,极大地增强了模型捕获长程依赖和复杂模式的能力。

8.

CLIP(Contrastive Language-Image Pre-training)模型中的ResNet-50作为图像编码器部分之所以比较大,并不是因为ResNet-50本身在网络结构上相较于其他类似深度学习模型有着显著更多的参数,而是由于以下几个原因:

  1. 深度和宽度:虽然ResNet-50在经典的计算机视觉任务中可能并不比ResNet-34大很多,但由于CLIP的目标是跨模态预训练,它需要构建能够捕捉到广泛图像特征的强大模型,这通常意味着会选择更深或更宽的网络结构。尽管50层相对于34层看似差异不大,但在大型预训练模型中每一层的参数数量累加起来都会导致模型整体规模增大。

  2. 嵌入维度:CLIP模型为了能够有效地与文本编码器的输出进行对比学习,其图像编码器产生的嵌入向量维度往往较大,这会导致最后一层全连接层的参数量增加。

  3. Transformer结构:虽然ResNet-50是CLIP模型的一部分,但CLIP还结合了Transformer架构用于跨模态学习,Transformer包含自注意力机制,这种机制使得模型能够捕捉全局依赖关系,但也增加了大量的参数。

  4. 预训练数据规模:为了学习丰富的跨模态表示,CLIP通常会在大规模的数据集上进行训练,这就要求模型具有足够的容量去吸收和表达这些数据中的多样性和复杂性,从而可能会选择参数量较大的模型。

  5. 训练目标:CLIP旨在学习一种通用的图像-文本联合嵌入空间,以便在不需微调的情况下应用于多种下游任务。为了达到这一目的,模型必须具备较强的泛化能力,这也可能导致模型的规模变大。

综上所述,CLIP模型中的ResNet-50作为图像编码器部分体积相对较大,是因为模型的设计是为了完成更为复杂的跨模态学习任务以及应对大规模预训练数据集的需求,而非仅仅因为ResNet-50本身的网络结构设计。

应用:【CLIP综述】CLIP在医学影像中的应用(二)_biovil模型-CSDN博客

十三.

LLaMA模型(Large Language Model by Alibaba)训练时的数据结构主要基于Transformer架构,其训练数据是大规模的文本序列数据。具体训练过程可以概括如下:

  1. 数据预处理

    • 训练数据通常包括大量的文本序列,这些文本可能来源于公开的互联网文本、书籍、新闻、对话等多种来源。
    • 文本经过清理,去除无关信息,进行必要的文本规范化处理(如大小写转换、标点符号处理等)。
    • 如果是字符级模型,文本会被拆分为字符序列;如果是基于词的模型,则需进行分词处理。
  2. 序列化输入

    • 经过预处理的文本序列被转化为适合Transformer模型处理的形式,即一个包含多个tokens(词或字符)的序列。
    • 为了包含位置信息,每个token会被附加一个位置编码(Positional Encoding)。
  3. 模型结构

    • LLaMA模型采用了Transformer架构,该架构由多层自注意力机制(Self-Attention)构成的编码器和(或)解码器堆叠而成。
    • 对于自回归模型(如GPT系列),模型通常只包含解码器部分,训练时基于历史序列预测下一个token。
    • 对于双向模型(如BERT系列),模型包含编码器部分,允许模型同时考虑上下文的前后信息。
  4. 训练目标

    • 训练目标是最大化模型在给定输入序列后生成正确token序列的概率,通常采用最大似然估计(MLE)或自注意力下的交叉熵损失函数进行优化。
  5. 训练过程

    • 利用大规模GPU集群进行分布式训练,训练数据按批次输入模型,每批次包含多个序列样本。
    • 通过反向传播算法更新模型参数,优化损失函数,使得模型在处理各类自然语言任务时具备更强的泛化能力。
  6. 训练策略

    • 在训练过程中,可能采用学习率衰减、权重衰减、梯度裁剪、混合精度训练等多种优化策略,以提高模型训练效率和性能。

LLaMA模型通过上述数据结构和训练过程,学习到丰富的语言结构和语义知识,进而能在各种自然语言处理任务中表现出色。

十四.APE

APE模型(这里假设是指之前提及的“最强全开源视觉感知模型APE”或者是在CLIP基础上改进的APE模型)在训练时的数据结构与其所针对的任务密切相关,但通常情况下视觉模型训练数据结构包括以下几个核心部分:

  1. 图像数据

    • 图像数据通常是训练的基础,它们被组织成单个图像文件(例如JPEG、PNG或其他图像格式),并按照特定的目录结构存储以便读取。
    • 图像可以是任意尺寸,但在实际训练前往往需要进行预处理,比如缩放到固定的尺寸、色彩归一化、随机裁剪、翻转等增强操作。
  2. 标注数据

    • 对于分类、检测或分割任务,每张图像会有对应的标注信息。标注可能是类别标签(对于分类)、边界框坐标及其对应类别的标签(对于目标检测)、像素级的语义标签(对于语义分割)等。
    • 标注信息通常存储在单独的文件或数据库中,可以是CSV、JSON、XML格式,也可以是专门的二进制格式如LMDB,便于高效读取。
  3. 数据加载器

    • APE模型在训练时会利用数据加载器将原始图像和标注数据转化为模型可以处理的Tensor形式,这种数据结构在深度学习框架(如PyTorch、TensorFlow)中表现为张量。
    • 加载器会实现批处理(Batching),即将多张图像及其对应的标注打包成一个批量输入,用于模型的一次迭代训练。
  4. 多模态数据整合

    • 若APE模型支持多模态学习,比如结合了视觉和文本信息,那么还会包括对应的文本数据。文本也会被预处理成适当的嵌入形式,然后与图像特征相结合,形成联合的训练样本。

由于APE模型特别强调了“全开源”和在不同任务上的优秀表现,其训练数据结构应该设计得相当灵活,能够适应多种类型的视觉任务,同时可能还包括创新的方案来处理不同粒度级别的视觉信息。具体的数据结构细节则取决于模型开发者提供的实现方式以及所使用的训练框架。

十五.技能点

1."YOLO"(You Only Look Once)和"DINO"(DIstillation of knowledge)是两种不同的模型,针对不同的任务和学习目标。以下是它们学习到的特征的主要区别:

  1. 任务目标:

    • YOLO: YOLO是一种目标检测模型,旨在在图像中检测和定位多个物体。YOLO的训练目标是通过回归网络预测图像中每个物体的边界框及其类别概率。
    • DINO: DINO主要是一种自监督学习方法,专注于学习图像表示。DINO的目标是通过对比损失来训练模型,使相似的图像在嵌入空间中更加接近。
  2. 学习方法:

    • YOLO: YOLO使用有监督学习,通过最小化目标检测任务中的损失函数,使得模型能够准确地定位和分类图像中的物体。
    • DINO: DINO采用自监督学习方法,通过对比损失来约束网络学习图像特征,使得相似图像的表示更加接近。
  3. 特征表示:

    • YOLO: YOLO学习用于目标检测的图像特征,这些特征应该有助于准确地定位和分类图像中的物体。
    • DINO: DINO学习的是通用的图像表示,旨在捕捉图像中的语义和结构信息。这些表示可以在多个任务中使用,而不仅仅局限于目标检测。
  4. 应用领域:

    • YOLO: YOLO主要用于目标检测任务,在实时目标检测和物体定位方面表现出色。
    • DINO: DINO主要关注图像表示学习,可以用于多个领域,包括图像分类、特征学习等。

总体而言,YOLO和DINO是为不同任务设计的模型,它们学习的特征主要取决于其任务目标。 YOLO侧重于目标检测,而DINO侧重于通用图像表示学习。

2.图像特征"和"图像表示"是在计算机视觉领域中经常使用的两个相关但不同的概念。

  1. 图像特征:

    • 图像特征是从图像中提取的、具有代表性的信息或属性。这些信息通常以数值形式呈现,可以用来描述图像中的局部或全局特征。图像特征的提取可以通过各种方法实现,例如卷积神经网络(CNN)的卷积层输出、手工设计的特征提取器(如SIFT、HOG等),或者其他用于表示图像内容的方法。
    • 图像特征通常具有语义上的含义,例如边缘、纹理、颜色等。这些特征有助于捕捉图像的重要信息,用于各种计算机视觉任务,如图像分类、目标检测等。
  2. 图像表示:

    • 图像表示是一个更综合的概念,它包括了对整个图像或图像中的内容进行抽象的方式。这可以是图像特征的组合,也可以是对图像的高级语义理解。图像表示通常是一个更高维度的向量或矩阵,它捕捉了图像中更丰富、更抽象的信息。
    • 在深度学习时代,图像表示通常是通过深度神经网络中的中间层次或全局池化层的输出来获得的。这些表示被训练成对图像的内容进行有效的编码,使得它们能够在各种任务中通用。

总体而言,图像特征是对图像中局部或局部信息的描述,而图像表示是对整个图像或其内容进行更抽象、更全面的表示。图像特征通常是用于下游任务的中间步骤,而图像表示则是在深度学习中学到的高级表达。

3.

Few-shot learning和微调确实在某种程度上涉及到数据量的区别,但两者之间还存在其他关键区别。下面对这两者进行简要的对比:

  1. 数据量:

    • Few-shot Learning: 这是一种特殊情况,通常指的是在非常有限的样本数据上进行模型训练。这个限制是相对极端的,可能是几个、几十个,甚至更少。
    • 微调: 微调通常涉及在相对较大的数据集上进行进一步训练。虽然比预训练时的大规模数据集要小,但通常会包含数百到数千个样本。
  2. 任务适应:

    • Few-shot Learning: 由于数据量非常有限,Few-shot learning的任务是在这个小样本上实现模型的泛化能力,使其能够在新的、相似的任务上表现良好。
    • 微调: 微调的任务是在新的数据集上进一步调整一个已经在大规模数据上预训练好的模型。微调旨在适应新任务的特定要求。
  3. 模型参数:

    • Few-shot Learning: 由于数据量有限,可能需要使用更加灵活的模型架构,以便在小样本上进行学习。
    • 微调: 在微调中,通常使用的是在大规模数据上预训练好的较大的模型,然后通过少量样本进行特定任务的调整。
  4. 一般性:

    • Few-shot Learning: Few-shot learning更加侧重于对于小样本情况下的泛化能力,适用于数据稀缺的情形。
    • 微调: 微调一般是指在更大规模的数据集上进行训练后,通过进一步训练适应特定任务,通常适用于相对较大的数据集。

总体而言,数据量是其中一个重要的区别,但Few-shot learning更加注重在非常小的数据集上实现泛化,而微调通常发生在相对较大的数据集上。

4.

SimCLR(Contrastive Learning of Visual Representations)和ITC(Triplet Center Loss)都是用于学习视觉表示的方法,但它们在损失函数和训练策略上有一些区别:

  1. SimCLR

    • SimCLR是一种对比学习方法,旨在通过最大化正样本对之间的相似性和最小化负样本对之间的相似性来学习视觉表示。它使用了一种称为"constrastive loss"的损失函数,在训练时,对于每个样本,通过数据增强获得两个视图(例如,随机裁剪、翻转等),然后使用一个共享的特征提取器来提取它们的特征表示。最后,使用一个对比损失函数来鼓励同一样本的两个视图在特征空间中彼此相似,而不同样本的特征则应该远离。损失函数通常是交叉熵损失函数或者更一般的信息论损失函数。
  2. ITC

    • ITC是一种基于三元组的损失函数,旨在通过最大化同类样本之间的相似性和最小化异类样本之间的相似性来学习特征表示。与SimCLR不同,ITC通常是与softmax损失函数结合使用的。它试图将每个类别的样本拉近到相应的类别中心,以减小类内方差。损失函数的形式在之前的回答中已经描述过。

主要区别

  • SimCLR侧重于对比学习,通过最大化正样本对之间的相似性来学习视觉表示,通常使用对比损失函数来实现。而ITC侧重于通过拉近同类样本和远离异类样本的距离来学习特征表示,通常与softmax损失函数结合使用。

  • SimCLR通常在无监督或半监督场景下使用,因为它不需要标签信息,而ITC通常在有监督场景下使用,因为它需要类别信息。

选择使用哪种方法取决于具体的任务需求、数据集和实验效果。

10.

One-shot 学习是一种机器学习方法,它专注于从一个或极少数的样本中学习新类别,并能够对未见过的新样本进行准确分类。这种能力类似于人类在面对新的概念或物体时,仅需观察一次就能理解和记忆其特征。

在深度学习领域中,实现One-shot学习的关键在于构建能够快速适应和泛化到新类别的模型。以下是一些典型策略:

  1. 元学习(Meta-Learning)

    • 元学习模型通过训练一系列小规模任务(也称为“内集”任务),学会如何快速学习。在每个任务上,模型都尝试从少量样本中学习并做出预测。
    • 例如,MAML(Model-Agnostic Meta-Learning)算法旨在找到一组初始化参数,使得在遇到新的小数据集时,只需用这些数据进行一小步梯度更新就能达到较好的性能。
  2. 原型网络(Prototypical Networks)

    • 原型网络利用支持向量机思想,将每个类别表示为特征空间中的一个原型(即该类别所有样本特征的平均值或其他形式的中心点)。
    • 对于一个新的样本,计算它与各个类别原型之间的距离,并将其分配给最近的原型对应的类别。
  3. 匹配网络(Matching Networks)

    • 匹配网络结合了注意力机制,在测试阶段根据查询样本与存储在内存中的支持样本之间的相似性来进行类别预测。
    • 它学习了一个嵌入函数和一个加权求和函数,能直接从单个示例中进行推理。
  4. 变分自编码器(Variational Autoencoder, VAE)和生成对抗网络(Generative Adversarial Networks, GANs)

    • 虽然不是严格意义上的one-shot学习方法,但这类模型可以用于生成或重建新样本,辅助one-shot学习过程。
    • 例如,通过先验知识和生成技术生成足够的虚拟样本来增强模型对于新类别的理解。
  5. 关系网络(Relation Networks)

    • 关系网络通过学习一个通用的关系函数来衡量任意两个输入样本之间的关系,从而可以直接应用于one-shot和few-shot场景下的分类问题。

总的来说,one-shot学习的目标是让模型具备更强的归纳能力和泛化能力,能够在有限的监督信息下有效地推广到新的、未曾见过的类别上。

11.

CLIP(Contrastive Language-Image Pre-training)模型通过大规模的多模态预训练,其图像部分学习到了相当丰富且抽象的视觉信息。具体而言,CLIP的图像编码器部分理解了以下类型的信息:

    1.    基础物体识别:能够识别和理解图像中的基本物体,如不同类型的动物、植物、交通工具、家具、食物等。
    2.    场景理解:不仅能识别单一物体,还能理解复杂的场景结构,比如分辨出一幅照片是在室内还是室外,描绘的是城市景观还是自然风光等。
    3.    动作和状态:CLIP可以捕捉到图像中物体的动作和状态,例如理解文本描述“一只鸟正在飞翔”或“一只猫正在睡觉”所对应的图像内容。
    4.    属性和细节:除了物体本身,模型还能学到颜色、形状、大小、材质等视觉属性,以及物体间的相对位置关系等细节信息。
    5.    上下文相关性:鉴于CLIP训练的数据多样性,模型还能理解图像中物体之间的上下文关系,例如一个人手持物品、衣服的颜色与背景的关系等。
    6.    概念泛化:CLIP具有很强的泛化能力,能够在未见过的类别上执行零样本(zero-shot)任务,这意味着它能将学习到的概念应用到全新的对象或情境中。

总之,CLIP的图像编码器部分学习到的是跨越多种维度和层次的视觉信息,这些信息足以让模型与给定的自然语言描述进行准确的匹配和关联,展现出强大的跨模态理解能力。

12.

Swin Transformer是一种专门针对计算机视觉任务优化的Transformer架构,它可以被视为Vision Transformer(ViT)在计算效率和性能上的一个重要升级版。下面我将以通俗易懂的语言为您讲解Swin Transformer的工作原理:

1. Transformer的基础 Transformer原本是用于自然语言处理(NLP)的模型,它通过自注意力机制来理解和处理文本序列。而在Swin Transformer中,这种自注意力机制被巧妙地应用于图像处理,使模型能够理解图像中的各个部分间的关联。

2. 多尺度感知 在图像中,物体大小各异,传统的Transformer直接作用于图像像素时计算量巨大。Swin Transformer引入了层级结构和滑动窗口(Shifted Window)的概念,实现了对图像进行多尺度分析。模型会将大图像切割成多个小窗口,在每个窗口内部计算自注意力,同时通过跨窗口连接机制整合不同窗口间的信息。

3. 层级特征提取 类似于CNN(卷积神经网络)中的特征金字塔网络(FPN),Swin Transformer构建了一个层级结构,随着网络层数加深,特征图的空间分辨率逐渐减小,但感受野(能“看”到的图像范围)增大,这样既能捕捉到局部细节又能把握全局上下文。

4. Shifted Window Attention 不同于全局自注意力,Swin Transformer在每个层次中,窗口内的像素会通过自注意力机制相互作用,而在相邻层之间,窗口会进行一定的位移(Shift),使得窗口之间的信息得以流动,从而实现了在保持较高效率的同时,兼顾了局部和全局信息的融合。

5. 效率优化 通过局部窗口注意力和窗口间的信息传递机制,Swin Transformer大幅降低了计算复杂度,尤其适合处理高分辨率的图像。这样一来,即使是大规模图像也能在合理的时间内完成高效处理。

总结来说,Swin Transformer就像一位细心的画家,他不是一次性看完整幅画作(全局注意力),而是分块、分层地观察并描绘画面细节(局部窗口注意力),并且在绘画过程中,他会不断调整视角(窗口位移),确保不同区块之间的协调性,从而绘制出既细致入微又整体连贯的艺术作品(高精度的图像识别结果)。

13.

在自然语言处理(NLP)中,直接提到“单针检索”和“多针检索”的概念并不常见。但如果将这两个概念借用到NLP的场景中,可以进行如下类比解释:

  1. 单针检索

    • 类似比喻:可以理解为一种精确的、目标导向的信息检索或抽取方法,重点在于对单一信息源或线索进行深入挖掘,力求精确定位到所需信息。
    • 实际应用举例:在一个简短的上下文中,或者在特定的文本区域,模型集中注意力去寻找和匹配某一特定信息点,如在问答系统中寻找最相关的问题答案。
  2. 多针检索

    • 类似比喻:可以看作是从多个维度、多个信息源或线索同时进行信息检索和综合分析的过程,覆盖范围更广,可能会涉及多个上下文或多个潜在信息片段的并行处理。
    • 实际应用举例:在处理较大文本或复杂情境时,模型可能需要对多个相关段落或多种信息线索进行并发处理,例如在检索式问答系统中,模型不仅查看一个问题的直接上下文,还可能遍历整个文档库,通过多轮或分布式检索来聚合不同部分的相关信息。

在实际NLP技术中,这可能对应于不同的处理策略,如:

  • 单针检索可能对应于具有精确注意力机制的模型,能够在一个较短上下文中迅速锁定目标信息。
  • 多针检索可能代表一种多路并行或层次化的信息检索策略,比如使用多头注意力(Multi-Head Attention)机制的Transformer模型,可以从不同角度同时捕获文本中的多重信息线索。

请注意,以上解释是基于对“单针检索”和“多针检索”进行的创造性类比,并非NLP领域的标准术语。在具体的NLP技术文献或应用场景中,可能有不同的对应技术和实现方法。

14.

在自然语言处理(NLP)领域,Masked Sequence Packing 是一种将多个短序列打包在一起形成一个较长序列的技术,特别适用于训练像BERT(Bidirectional Encoder Representations from Transformers)这样的预训练模型,以及那些采用Masked Language Modeling(MLM)任务的模型。

Masked Sequence Packing 的主要作用:

  1. 提高训练效率:通过将多个短序列拼接成一个序列,模型可以在一个前向传播过程中处理更多的有效信息,从而在同样的计算资源下,提升训练数据的利用率。

  2. 学习长距离依赖:尽管单个序列的长度有限制,但是通过序列打包,模型有机会在同一个训练样本中学习跨越多个短序列的上下文依赖关系,增强了模型处理长文本的能力。

  3. 节省显存:相比于为每个短序列单独创建一个batch,序列打包可以减少内存开销,特别是在处理GPU等硬件资源有限的情况下,这种方法尤为重要。

具体做法是,首先选取若干个较短的文本序列,然后在这些序列之间插入特殊的分隔符标记(例如 [SEP] 或者 [MASK]),并将部分词语替换为 [MASK] 标记进行遮蔽,模型在训练时需要根据上下文预测出被遮蔽的词。这样,模型就可以在一个较大的上下文范围内进行学习,同时解决了处理长序列的问题。在BERT等模型中,这种技术是预训练期间用来学习通用语言表示的重要组成部分。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
多模态视觉语言模型是一种能够同时处理图像和文本的模型。目前有几个主流的框架用于构建多模态视觉语言模型,包括: 1. ViLBERT(Vision-and-Language BERT):ViLBERT是由微软研究院提出的一种多模态预训练模型。它通过联合训练图像和文本任务来学习视觉和语言之间的关联。 2. LXMERT(Learning Cross-Modality Encoder Representations from Transformers):LXMERT是由美国南加州大学提出的一种多模态预训练模型。它使用Transformer网络结构来编码图像和文本,并通过联合训练来学习视觉和语言之间的交互表示。 3. UNITER(UNiversal Image-TExt Representation):UNITER是由华为诺亚方舟实验室提出的一种多模态预训练模型。它使用Transformer网络结构来编码图像和文本,并通过联合训练来学习视觉和语言之间的共享表示。 4. VisualBERT:VisualBERT是由美国斯坦福大学提出的一种多模态预训练模型。它将图像和文本输入到同一个Transformer网络中,并通过联合训练来学习视觉和语言之间的关联。 5. OSCAR(Object-Semantics Aligned Pre-training):OSCAR是由Facebook AI提出的一种多模态预训练模型。它使用Transformer网络结构来编码图像和文本,并通过联合训练来学习视觉和语言之间的对齐表示。 这些主流框架都在多模态视觉语言理解任务中取得了很好的效果,并且在图像描述生成、视觉问答等任务上有广泛的应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值