Reciprocal Multi-Layer Subspace Learning for Multi-View Clustering
1 摘要
文章提出的算法:用于多视图聚类的交互多层子空间学习算法。有两个主要组成部分:分层自表示层 Hierarchical Self-Representative Layers (HSRL)和反向编码网络Backward Encoding Networks (BEN)。
(1)HSRL:
构造与潜在表示相连接的互反多层子空间表示,以分层恢复高维数据所在的底层低维子空间。
(2)BEN:
探索不同视图之间的复杂关系,并隐式强制所有视图的子空间彼此一致且更可分离。
不同的视图共享一个公共的潜在的聚类结构,基于这个假设,文章将视图特定的子空间表示共同规范为一致的子空间表示,以增强不同视图的结构一致性。
2 研究方法—RMSL
A、研究框架
构造了与潜在表示层H链接的多层子空间交互表示,以分层恢复数据潜在的簇结构。即:多层子空间表示在联合框架中相互提高,反向编码网络BEN从公共表示H中重构视图特定的自我表示,使H能够灵活地综合多个视图的综合信息,反映数据点之间的内在关系。
特点:
采用反向编码网络BEN将多个特定视图的子空间{
Θ
s
v
\Theta_s^v
Θsv}
v
V
\ _v^V
vV表示编码为潜在表示H,这一点非常重要,因为子空间表示可以反映数据的潜在簇结构。
B、多视图表示学习
两个训练的准则:一类是基于多视图表示学习的深度神经网络方法,基于自动编码器,为了更好的重构输入学习共享的表示,另一类是基于典型的相关分析(CCA), 将不同的视图通过最大化它们的相关性投射到一个共同的空间中,例如深度规范相关分析(DCCA)
C、提出的方法
(1)分层自表示层(HSRL)
兼顾特定视图的自表示和公共视图潜在的自表示,建立目标函数,来更新HSRL的权重参数:
损失函数与自表示有关,采用F范数用于重构损失以平缓噪声的影响,采用核范数用于正则项去保证类内高的一致性,因此目标函数改写为:
注意:F范数和核范数性质特点,其中F范数是指矩阵的每个元素的平方和的开方,核范数||W||*是指矩阵奇异值的和。
(2)反向编码网络(
BEN)
引入反向编码网络探索不同视图之间复杂的关系,同时构造潜在的表示H,而不是将不同的视图注入到一个公共的低维空间中。最后建立构造H的损失函数:
BEN是由M个全连接层组成的,它能够非线性的编码不同视图的互补信息成一个公共的潜在表示H。然后引入一个正则项增强模型的泛化能力。
(3)HSRL+BEN
联合优化目标函数:
模型构造了相互关联的多层子空间表示和一个潜在的描述,以分层恢复数据的簇结构,并寻找所有视图共享的数据的公共分区。
D、模型优化
(1)
(2)
(3)
(4)