应力分析(1)

弹塑性力学1–应力分析(1)

弹性力学的研究对象和内容

​ 物体受外载荷作用所产生的形状和大小的改变,称之为变形或形变,通常考虑的外部载荷包括机械外力、温度、电磁力等各种物理因素。如果将引起变形的外部载荷移去后,物体能完全回复到原来的形状和大小,这种变形称为弹性变形。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MP6YfMD3-1593706391169)(image/Elastic_plastic_001.png)]

应力分析

应力矢量

$ \newcommand{\vect}[1]{\boldsymbol{#1}}$

考查平面C上包括P点在内的微小面积 Δ S \Delta S ΔS,如下图所示

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qkr3jA80-1593706391173)(image/Elastic_plastic_002.png)]

P点内的应力集度可使用如下式定义的应力矢量 T ( n ) \boldsymbol{T(n)} T(n)描述

KaTeX parse error: Undefined control sequence: \vect at position 2: \̲v̲e̲c̲t̲{T(n)}=\lim_{\D…

在笛卡尔坐标系下,应力矢量可以表示为

T ( n ) = T x e x + T y e y + T z e z (1.1) \boldsymbol{T(n)}=T_x \boldsymbol{e}_x +T_y \boldsymbol{e}_y +T_z \boldsymbol{e}_z \tag{1.1} T(n)=Txex+Tyey+Tzez(1.1)

在P点的领域内截取一个微六面体,若微面的外法线方向与坐标轴的正方向一直,则称为正面;若与坐标轴正方向相反,则称为负面。每个应力矢量沿空间坐标轴的3个分量中,一个分量垂直于作用面,用 σ \sigma σ表示,两个分量平行与作用面,是剪应力,用 τ \tau τ表示

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cDMQ2RLv-1593706391174)(image/Elastic_plastic_003.png)]
T ( e x ) = σ x x e x + τ x y e y + τ x z e z T ( e y ) = τ y x e x + σ y y e y + τ y z e z T ( e z ) = τ z x e x + τ z y e z + σ z z e z (1.3) \boldsymbol{T(e_x)}=\sigma_{xx}\boldsymbol{e}_x+\tau_{xy} \boldsymbol{e}_y+\tau_{xz}\boldsymbol{e}_z\\ \boldsymbol{T(e_y)}=\tau_{yx} \boldsymbol{e}_x+\sigma_{yy}\boldsymbol{e}_y+\tau_{yz}\boldsymbol{e}_z\\ \boldsymbol{T(e_z)}=\tau_{zx} \boldsymbol{e}_x+\tau_{zy}\boldsymbol{e}_z+\sigma_{zz}\boldsymbol{e}_z \tag{1.3} T(ex)=σxxex+τxyey+τxzezT(ey)=τyxex+σyyey+τyzezT(ez)=τzxex+τzyez+σzzez(1.3)
式中每个应力分量有两个下标,前一个下标代表作用面的外法线方向,后一个下标代表应力的作用方向。为了简便起见,以后正应力的两个相同下表只保留其中一个。3个应力矢量共9个分量,使用张量的记法,9个应力分量记为
[ σ i j ] = [ σ 11 σ 12 σ 13 σ 21 σ 22 σ 23 σ 31 σ 32 σ 33 ] [\sigma_{ij}]= \left[ \begin{matrix} \sigma_{11} & \sigma_{12} & \sigma_{13}\\ \sigma_{21} &\sigma_{22} &\sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{matrix} \right] [σij]=σ11σ21σ31σ12σ22σ32σ13σ23σ33
应力正负号规定:正面上的应力若指向坐标轴正方向为正,否则为负;负面上的应力若指向坐标轴负方向为正,否则为负。式(1.3)使用张量记法可以表示为
T ( e i ) = σ i k e k (1.4) \boldsymbol{T(e_i)}=\sigma_{i \boldsymbol k} \boldsymbol{e_k} \tag {1.4} T(ei)=σikek(1.4)

Cauchy应力公式(斜面应力公式)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9omZLO5w-1593706391177)(image/Elastic_plastic_004.png)]

斜面上的应力矢量
T ( n ) = T ( e x ) l + T ( e y ) m + T ( e z ) n (1.5) \boldsymbol{T(n)}=\boldsymbol{T}(\boldsymbol e_x) l+\boldsymbol{T}(\boldsymbol e_y)m+\boldsymbol{T}(\boldsymbol e_z)n \tag{1.5} T(n)=T(ex)l+T(ey)m+T(ez)n(1.5)
这就是著名的Cauchy公式,又称斜面应力公式,其实质是微四面体的平衡条件。

式(1.5)用分量的形式表示为
T x = σ x l + τ y x m + τ z x n T y = τ x y + σ y m + τ z y n T z = τ x z + τ y z m + σ z n (1.6) T_x=\sigma_{x}l+\tau _{yx}m+\tau_{zx}n \\ T_y=\tau_{xy}+\sigma_{y}m+\tau_{zy}n \\ T_z=\tau_{xz}+\tau_{yz}m+\sigma_{z} n \tag{1.6} Tx=σxl+τyxm+τzxnTy=τxy+σym+τzynTz=τxz+τyzm+σzn(1.6)
使用张量指标记法,式(1.5)和式(1.6)可分别表示为
T ( n ) = n i T ( e i ) (1.7a) \boldsymbol{T(n)}=n_i \boldsymbol{T}(\boldsymbol{e}_i) \tag{1.7a} T(n)=niT(ei)(1.7a)

T i = n i σ i j (1.7b) T_i=n_i \sigma_{ij} \tag{1.7b} Ti=niσij(1.7b)

Cauchy公式有两个重要的应用:

(1)求斜面的各种应力。

(2)确定力的边界条件。

平衡微分方程

根据应力函数的连续性、Taylor级数知识,以六面体微元推导。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1FeI8nDT-1593706391179)(image/Elastic_plastic_005.png)]
∂ σ x ∂ x + ∂ τ y z ∂ y + ∂ τ z x ∂ z + F x = 0 (1.10a) \frac {\partial \sigma _x}{\partial x}+\frac {\partial \tau_{yz}}{\partial y}+\frac {\partial \tau_{zx}}{\partial z}+F_x=0 \tag{1.10a} xσx+yτyz+zτzx+Fx=0(1.10a)

∂ τ x y ∂ x + ∂ σ y ∂ y + ∂ τ z y ∂ z + F y = 0 (1.11b) \frac{\partial \tau_{xy}}{\partial x}+\frac {\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{zy}}{\partial z}+F_y=0 \tag{1.11b} xτxy+yσy+zτzy+Fy=0(1.11b)

∂ τ x z ∂ x + ∂ τ y z ∂ y + ∂ σ z ∂ z + F z = 0 (1.11c) \frac{\partial \tau_{xz}}{\partial x}+\frac{\partial \tau_{yz}}{\partial y}+\frac {\partial \sigma_{z}}{\partial z}+F_z=0 \tag{1.11c} xτxz+yτyz+zσz+Fz=0(1.11c)

平衡方程的张量表示为
σ i j , i + F j = 0 (1.13) \sigma_{ij,i}+F_j=0 \tag{1.13} σij,i+Fj=0(1.13)
式中
σ i j , i = ∂ σ 1 j ∂ x 1 + ∂ σ 2 j ∂ x 2 + ∂ σ 3 j ∂ x 3 \sigma_{ij,i}=\frac{\partial \sigma_{1j}}{\partial x_1}+\frac{\partial{\sigma_{2j}}}{\partial x_2}+\frac{\partial \sigma_{3j}}{\partial x_3} σij,i=x1σ1j+x2σ2j+x3σ3j

边界条件

当物体的一部分边界上给定了分布的表面力,称这部分边界为力边界,使用 S σ S_\sigma Sσ表示。力边界条件指边界上个点的应力与已知表面力应满足的关系。力的边界条件实质上是物体边界点的平衡条件。如下图,对照Cauchy公式,则该店的应力分量应满足下式
σ x l + τ y x m + τ z x = T ‾ x (1.14a) \sigma_xl+\tau_{yx}m+\tau_{zx}=\overline{T}_x \tag{1.14a} σxl+τyxm+τzx=Tx(1.14a)

τ x y l + σ y m + τ z y = T ‾ y (1.14b) \tau_{xy}l+\sigma_{y}m+\tau_{zy}=\overline{T}_y \tag{1.14b} τxyl+σym+τzy=Ty(1.14b)

τ x z l + τ y z m + τ z n = T ‾ z (1.14c) \tau_{xz}l+\tau_{yz}m+\tau_{z}n=\overline{T}_z \tag{1.14c} τxzl+τyzm+τzn=Tz(1.14c)

在这里插入图片描述


  1. 陈明祥. 弹塑性力学[M]. 北京: 科学出版社, 2007. ↩︎

  • 3
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Galaxy_Robot

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值