§1 球面三角基本名称及性质
*大圆
通过球心的平面与球面相截的交线称为大圆,其半径等于球的半径R
*球面上两点A,B的大圆弧长
在球面上连接A,B两点的最短线是通过A,B的大圆上较短的弧 ,其圆心角为 (弧度),
则大圆弧长(弧长)a=R,或记为a= (单位为大圆半径R)
*两大圆弧夹角
如图所示,两大圆弧(AB和AC)的交点A上相应的两条大圆切线 , 间的夹角称为这两大圆弧的夹角,记为角A,也可以称两平面OAB和OAC所构成的两面角为这两大圆弧的夹角
*球面二角形面积
如图所示,球面 的面积(图中阴影部分)
(A为两大圆弧夹角,单位是弧度)
*球面三角形
三个大圆之间的球面部分称为球面三角形。因为三个大圆会构成几个球面三角形,
我们只考虑边和角都小于 的球面三角形。
如图中所示球面三角形ABC,记a,b,c为三边(即三条大圆弧长 以大圆半径R为度量单位)A、B、C为三角(三条大圆弧之间的两两夹角,以弧度为单位),则球面三角形的边和角满足以下条件:
,
称为球面角超(单位弧度)
球面三角形面积
§2.球面三角基本定理和公式
(以下各定理或公式,只列出其中之一,其它公式可利用指标循环规则,自行推出。球面三角形三边为α,β,γ,三个角为A,B,C)
1.正弦定理
2.余弦定理
*边:
*角:
3.余切定理
*边:
*角:
4.正切定理
5.五元素公式
*边:
*角:
6.半角公式
7.半边公式
8.德兰布——高斯公式
9.耐普尔公式
§3.球面三角形解法
1.一般球面三角形计算公式
已知元素 求解公式 三边: 三角:A,B,C 两边及夹角: 由 解出A,B.
两角及夹边: 由 解出
两边及一对角: 两角及一对边: 2.球面直角三角形计算公式
已知元素 求解公式 斜边及一角: 一直角边及其对角: 一直角边及其邻角: 两直角边: 斜边及一直角边: 两角:A,B 注:计算时,应尽量利用含未知元素的正切(或余切)的公式,应避免采用正弦的公式。
计算结果可代入正弦定理公式进行验算。
from: http://202.113.29.3/nankaisource/mathhands/