线性代数

  1. n阶行列式可根据任意一行(列)的代数余子式展开

  2. 拉普拉斯展开式
    | A * | | A O |
    | O B | = | * B | = |A| * |B|

  3. 范德蒙行列式
    =

  4. 伴随矩阵 A* :由代数余子式构成的矩阵
    |A| = 特征值乘积
    AA* = A*A = |A|E

  5. 初等矩阵:单位矩阵经过一次初等变换得到的矩阵

  6. 矩阵可逆的条件:
    (1)存在B,AB = E 或 BA=E
    (2)Ax = 0只有零解
    (3)|A|!=0或r(A)=n或A的行列向量线性无关
    (4)存在b,Ax=b解唯一
    (5)特征值均不为0

  7. 矩阵求逆的方法:
    (1)利用伴随矩阵
    (2)初等行变换
    (3)定义法
    (4)分块矩阵

  8. 初等矩阵P,PA就是矩阵A作了一次同样的行变换

  9. A通过有限次初等变换得到B,则B为A的等价矩阵;
    若A可逆,则A可作一系列初等行变换化为单位矩阵。

  10. 初等变换不改变矩阵的秩

  11. 矩阵的秩:存在r阶子式不为0,且所有r+1阶子式均为0

  12. 向量内积(点积)为0,则向量正交

  13. 线性组合:一组向量与一组系数k相乘
    线性表出:一个向量可由一组向量的线性组合表示出来;
    或者一个向量组可由另一个向量组线性表出;
    若两个向量组可互相线性表出,则两个向量组等价。

  14. 线性相关:存在一组系数k使得向量组的线性组合为0向量
    向量组线性相关,则添加任意向量后,仍然线性相关。
    向量组线性无关,则其延伸组必定线性无关。

  15. 极大线性无关组:一般不唯一,但向量个数都等于原向量组的秩

  16. Schmidt正交化:
    正交矩阵:AAT = ATA = E,A的行列向量组是正交规范向量组

  17. 向量空间,基底(基底个数=维数),
    规范正交基:向量内积要么为1,要么为0
    解空间:齐次方程组Ax=0的解向量的集合W,dimW=n-r(A)
    过渡矩阵:β = αC,C是过渡矩阵,基底对应坐标X = CY

  18. 克拉默法则:
    对于非齐次线性方程组Ax=b,
    若|A|!=0,则方程组解唯一,且解向量中xi = |Ai|/|A|。
    推论:
    对于齐次线性方程组Ax=0,
    (1)|A|!=0,则方程组有唯一零解
    (2)|A|!=0,则方程组有非零解

  19. 齐次线性方程组Ax=0
    (1)只有零解 <=> 列向量线性无关 <=> r(A)=n
    (2)有非零解 <=> 列向量线性相关 <=> r(A)<n
    基础解系向量个数 + r(A) = n
    求法:初等行变换不改变线性方程组的解(阶梯型方程前r个为独立未知量,后面n-r个为自由未知量,对自由未知量赋值即可求得基础解系)

  20. 非齐次线性方程组Ax=b
    (1)Ax=b无解 <=> b不能由 {a} 线性表出 <=> r(A)!=r(A|b)
    (2)Ax=b有解 <=> b可由 {a} 线性表出 <=> r(A)=r(A|b)
    (2.1)Ax=b解唯一 <=> b的线性表出唯一 <=> {a} 线性无关 <=> r(A)=n=r(A|b)
    (2.2)Ax=b解无穷 <=> b的线性表出不唯一 <=> {a} 线性相关 <=> r(A)=r=r(A|b)<n
    求法:先求对应齐次线性方程Ax=0的基础解系,再由自由未知量取0求出一个非齐次特解。
    通解:基础解系 + 特解

  21. 相似矩阵:P^(-1)AP=B,则A相似于B,A~B
    相似对角化:若A~对角阵∧,则称A可相似对角化,∧是A的相似标准形

  22. 相似对角化的充要条件:
    (1)n阶矩阵A可对角化 <=> A有n个线性无关的特征向量
    (2)λ1 != λ2是A的特征值 <=> A对应于λ1,λ2的特征向量线性无关
    推论:A有n个互不相同的特征值 <=> A有n个线性无关的特征向量 <=> A可相似对角化
    (3)λi是ri重特征值 <=> λi对应的线性无关特征向量个数小于等于ri个
    推论:n阶矩阵A可对角化 <=> A的ri重特征值对应的线性无关特征向量个数等于重数ri

  23. 相似矩阵的必要条件(特征值完全相同)
    (1)|λE - A| = |λE - B|
    (2)r(A) = r(B)
    (3)特征值相同
    (4)|A| = |B| = 特征值乘积
    (5)trA = trB = tr∧
    (6)A能对角化

  24. 实对称矩阵(AT = A)
    实对称矩阵的属于不同特征值对应的特征向量相互正交。
    实对称矩阵必相似于对角阵,且存在Q^(-1)AQ = QTAQ = ∧。
    求解Q:求A的特征值 → 对应特征向量 → 特征向量正交化 → 单位化 → 正交矩阵Q

  25. 二次型(xTAx)
    标准形:只有平方项
    规范形:只有平方项,且系数只能是1、-1、0
    化为标准形或规范形:正交变换x=Qy;配方法。

  26. 合同矩阵(CTAC=B,C可逆)
    可逆线性变换:设x=Cy,则f(x) = xTAx = yTCTACy = yTBy = g(y)
    惯性定理:对二次型作可逆线性变换得到的标准形不唯一,但其中的正平方项数p和负平方项数q都由二次型唯一确定。

  27. 正定(f(x) = xTAx > 0 恒成立,x!=0)
    可逆线性变换不改变二次型的正定性。
    正定充要条件:f(x) = xTAx 正定
    <=> A的正惯性指数p = r = n
    <=> A合同于E,即有CTAC = E
    <=> A = DTD,D可逆
    <=> A的全部特征值>0
    <=> A的全部顺序主子式>0
    正定必要条件:f(x) = xTAx 正定,则
    (1)A的主对角元素aii > 0
    (2)|A| > 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值