-
n阶行列式可根据任意一行(列)的代数余子式展开
-
拉普拉斯展开式
| A * | | A O |
| O B | = | * B | = |A| * |B| -
范德蒙行列式
= -
伴随矩阵 A* :由代数余子式构成的矩阵
|A| = 特征值乘积
AA* = A*A = |A|E -
初等矩阵:单位矩阵经过一次初等变换得到的矩阵
-
矩阵可逆的条件:
(1)存在B,AB = E 或 BA=E
(2)Ax = 0只有零解
(3)|A|!=0或r(A)=n或A的行列向量线性无关
(4)存在b,Ax=b解唯一
(5)特征值均不为0 -
矩阵求逆的方法:
(1)利用伴随矩阵
(2)初等行变换
(3)定义法
(4)分块矩阵 -
初等矩阵P,PA就是矩阵A作了一次同样的行变换
-
A通过有限次初等变换得到B,则B为A的等价矩阵;
若A可逆,则A可作一系列初等行变换化为单位矩阵。 -
初等变换不改变矩阵的秩
-
矩阵的秩:存在r阶子式不为0,且所有r+1阶子式均为0
-
向量内积(点积)为0,则向量正交
-
线性组合:一组向量与一组系数k相乘
线性表出:一个向量可由一组向量的线性组合表示出来;
或者一个向量组可由另一个向量组线性表出;
若两个向量组可互相线性表出,则两个向量组等价。 -
线性相关:存在一组系数k使得向量组的线性组合为0向量
向量组线性相关,则添加任意向量后,仍然线性相关。
向量组线性无关,则其延伸组必定线性无关。 -
极大线性无关组:一般不唯一,但向量个数都等于原向量组的秩
-
Schmidt正交化:
正交矩阵:AAT = ATA = E,A的行列向量组是正交规范向量组 -
向量空间,基底(基底个数=维数),
规范正交基:向量内积要么为1,要么为0
解空间:齐次方程组Ax=0的解向量的集合W,dimW=n-r(A)
过渡矩阵:β = αC,C是过渡矩阵,基底对应坐标X = CY -
克拉默法则:
对于非齐次线性方程组Ax=b,
若|A|!=0,则方程组解唯一,且解向量中xi = |Ai|/|A|。
推论:
对于齐次线性方程组Ax=0,
(1)|A|!=0,则方程组有唯一零解
(2)|A|!=0,则方程组有非零解 -
齐次线性方程组Ax=0
(1)只有零解 <=> 列向量线性无关 <=> r(A)=n
(2)有非零解 <=> 列向量线性相关 <=> r(A)<n
基础解系向量个数 + r(A) = n
求法:初等行变换不改变线性方程组的解(阶梯型方程前r个为独立未知量,后面n-r个为自由未知量,对自由未知量赋值即可求得基础解系) -
非齐次线性方程组Ax=b
(1)Ax=b无解 <=> b不能由 {a} 线性表出 <=> r(A)!=r(A|b)
(2)Ax=b有解 <=> b可由 {a} 线性表出 <=> r(A)=r(A|b)
(2.1)Ax=b解唯一 <=> b的线性表出唯一 <=> {a} 线性无关 <=> r(A)=n=r(A|b)
(2.2)Ax=b解无穷 <=> b的线性表出不唯一 <=> {a} 线性相关 <=> r(A)=r=r(A|b)<n
求法:先求对应齐次线性方程Ax=0的基础解系,再由自由未知量取0求出一个非齐次特解。
通解:基础解系 + 特解 -
相似矩阵:P^(-1)AP=B,则A相似于B,A~B
相似对角化:若A~对角阵∧,则称A可相似对角化,∧是A的相似标准形 -
相似对角化的充要条件:
(1)n阶矩阵A可对角化 <=> A有n个线性无关的特征向量
(2)λ1 != λ2是A的特征值 <=> A对应于λ1,λ2的特征向量线性无关
推论:A有n个互不相同的特征值 <=> A有n个线性无关的特征向量 <=> A可相似对角化
(3)λi是ri重特征值 <=> λi对应的线性无关特征向量个数小于等于ri个
推论:n阶矩阵A可对角化 <=> A的ri重特征值对应的线性无关特征向量个数等于重数ri -
相似矩阵的必要条件(特征值完全相同)
(1)|λE - A| = |λE - B|
(2)r(A) = r(B)
(3)特征值相同
(4)|A| = |B| = 特征值乘积
(5)trA = trB = tr∧
(6)A能对角化 -
实对称矩阵(AT = A)
实对称矩阵的属于不同特征值对应的特征向量相互正交。
实对称矩阵必相似于对角阵,且存在Q^(-1)AQ = QTAQ = ∧。
求解Q:求A的特征值 → 对应特征向量 → 特征向量正交化 → 单位化 → 正交矩阵Q -
二次型(xTAx)
标准形:只有平方项
规范形:只有平方项,且系数只能是1、-1、0
化为标准形或规范形:正交变换x=Qy;配方法。 -
合同矩阵(CTAC=B,C可逆)
可逆线性变换:设x=Cy,则f(x) = xTAx = yTCTACy = yTBy = g(y)
惯性定理:对二次型作可逆线性变换得到的标准形不唯一,但其中的正平方项数p和负平方项数q都由二次型唯一确定。 -
正定(f(x) = xTAx > 0 恒成立,x!=0)
可逆线性变换不改变二次型的正定性。
正定充要条件:f(x) = xTAx 正定
<=> A的正惯性指数p = r = n
<=> A合同于E,即有CTAC = E
<=> A = DTD,D可逆
<=> A的全部特征值>0
<=> A的全部顺序主子式>0
正定必要条件:f(x) = xTAx 正定,则
(1)A的主对角元素aii > 0
(2)|A| > 0
线性代数
最新推荐文章于 2023-07-24 14:12:30 发布