pytorch导出onnx格式模型时,不固定输入输出维度

本文介绍如何将PyTorch模型转换为ONNX格式,并实现输入输出维度的动态调整。通过修改ONNX模型文件中维度参数的方式,使得模型能够接受不同大小的输入数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pytorch模型转换为onnx格式模型后,模型的输入、输出维度跟转换模型时,用的dummy_input的维度有关系,属于固定尺寸的输入与输出。可以采用以下代码修改onnx模型的输入输出维度:

import onnx
 
model = onnx.load('xxx.onnx')
# 此处可以理解为获得了一个维度 “引用”,通过该 “引用“可以修改其对应的维度                                                                                          
dim_proto0 = model.graph.input[0].type.tensor_type.shape.dim[1]
# 将该维度赋值为字符串,其维度不再为和dummy_input绑定的值
dim_proto0.dim_param = 'input.0_1' # 或者 '?' 感觉只要是非数字即可
# 同理,修改输出相应维度
dim_proto_o1 = model.graph.output[0].type.tensor_type.shape.dim[1]
dim_proto_o1.dim_param = 'output.0_1' # 或者 '?' 感觉只要是非数字即可
onnx.save(model, 'dynamic_input_xxx.onnx')

但是这种方式,也跟网络结构有关系,最近在弄的一个网络结构,pytorch转换onnx后中间部分节点的输入输出是死的,所以这种只修改输入输出节点维度的情况,内部有可能还是存在问题的。

model = onnx.load('model.onnx')
model.graph.input[0].type.tensor_type.shape.dim[0].dim_param = '?'
onnx.save(model, 'dynamic_model.onnx')

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值