onnx模型转换opset版本和固定动态输入尺寸

 背景:之前我想把onnx模型从opset12变成opset12,太慌乱就没找着,最近找到了官网上有示例的,大爱onnx官网,分享给有需求没找着的小伙伴们。

1. onnx模型转换opset版本

官网示例:

import onnx
from onnx import version_converter, helper

# Preprocessing: load the model to be converted.
model_path = "path/to/the/model.onnx"
original_model = onnx.load(model_path)

print(f"The model before conversion:\n{original_model}")

# A full list of supported adapters can be found here:
# https://github.com/onnx/onnx/blob/main/onnx/version_converter.py#L21
# Apply the version conversion on the original model
converted_model = version_converter.convert_version(original_model, <int target_version>)

print(f"The model after conversion:\n{converted_model}")

其github地址如下:

onnx/docs/PythonAPIOverview.md at main · onnx/onnx (github.com)icon-default.png?t=N7T8https://github.com/onnx/onnx/blob/main/docs/PythonAPIOverview.md#converting-version-of-an-onnx-model-within-default-domain-aionnx其小伙伴拉到gitee上的地址如下(以防有的小伙伴github打不开):

docs/PythonAPIOverview.md · meiqicheng/github-onnx-onnx - Gitee.comicon-default.png?t=N7T8https://gitee.com/meiqicheng1216/onnx/blob/master/docs/PythonAPIOverview.md#converting-version-of-an-onnx-model-within-default-domain-aionnx最后附上完整代码:

import onnx
from onnx import version_converter, helper

# A full list of supported adapters can be found here:
# https://github.com/onnx/onnx/blob/main/onnx/version_converter.py#L21
# Apply the version conversion on the original model

# Preprocessing: load the model to be converted.
model_path = r"./demo.onnx"
original_model = onnx.load(model_path)
print(f"The model before conversion:\n{original_model}")


converted_model = version_converter.convert_version(original_model, 11)
print(f"The model after conversion:\n{converted_model}")

save_model = model_path[:-5] + "_opset11.onnx"
onnx.save(converted_model, save_model)

2. onnx模型转固定动态输入尺寸

def change_dynamic_input_shape(model_path, shape_list: list):
    """
    将动态输入的尺寸变成固定尺寸
    Args:
        model_path: onnx model path
        shape_list: [1, 3, ...]
    Returns:

    """
    import os
    import onnx
    model_path = os.path.abspath(model_path)
    output_path = model_path[:-5] + "_fixed.onnx"
    model = onnx.load(model_path)
    # print(onnx.helper.printable_graph(model.graph))
    inputs = model.graph.input  # inputs是一个列表,可以操作多输入~
    # look_input = inputs[0].type.tensor_type.shape.dim
    # print(look_input)
    # print(type(look_input))
    # inputs[0].type.tensor_type.shape.dim[0].dim_value = 1
    for idx, i_e in enumerate(shape_list):
        inputs[0].type.tensor_type.shape.dim[idx].dim_value = i_e
    # print(onnx.helper.printable_graph(model.graph))
    onnx.save(model, output_path)


if __name__ == "__main__":
    model_path = "./demo.onnx"
    shape_list = [1]
    change_dynamic_input_shape(model_path, shape_list)

### 修改 ONNX 模型输入输出维度 对于需要调整 ONNX 模型输入输出维度的需求,可以采用多种方式来实现这一目标。具体的方法取决于模型的具体架构以及所使用的工具。 #### 方法一:通过修改 ONNX 文件中的定义 可以直接编辑 ONNX 文件中关于输入张量的信息来进行维度变更。例如,在处理行为识别模型时,如果原始模型接受五维输入,但目标平台 RKNN 仅支持四维,则可以通过重新定义 `input` 来适配新需求: ```python import onnx from onnx import helper, TensorProto # 加载现有的 ONNX 模型文件 model = onnx.load('original_model.onnx') # 创建新的输入描述符,这里假设将第一个维度设为动态(?),其他保持不变 new_input = helper.make_tensor_value_info( name='input', elem_type=TensorProto.FLOAT, shape=[None, 3, 256, 256] # 将原本的第一个维度改为 None 表示可变长度 ) # 替换旧的输入描述符 model.graph.input[0].CopyFrom(new_input) # 保存更改后的模型到磁盘 onnx.save(model, 'modified_model.onnx') ``` 这种方法适用于当只需要改变最外层的输入形状而不影响内部计算逻辑的情况下[^1]。 #### 方法二:利用 PyTorch 导出带有灵活维度的 ONNX 模型 另一种更为通用的方式是在最初从框架如 PyTorch 转换ONNX 的时候就设置好允许变化的维度参数。这使得即使后续操作会涉及到固定的中间节点尺寸,也能确保整个流程能够适应不同的输入规格: ```python import torch import torchvision.models as models import onnx dummy_input = torch.randn(1, 3, 256, 256) # 构建虚拟输入用于导出过程 model = models.resnet18(pretrained=True).eval() torch.onnx.export( model=model, args=(dummy_input,), f="dynamic_shape_model.onnx", input_names=['input'], output_names=['output'], dynamic_axes={ 'input': {0: 'batch_size'}, # 设置 batch 维度为动态 'output': {0: 'batch_size'} } ) ``` 此代码片段展示了如何创建一个具有动态批次大小的支持多批处理能力的 ONNX 模型[^2]。 #### 方法三:应用 Resize Operator 进行空间变换 有时可能不仅限于简单地调整时间序列或者批量数据的数量,还需要对图像或其他类型的特征图进行缩放。这时就可以考虑使用 ONNX 中内置的操作算子——Resize operator 来完成更复杂的重映射工作: ```python import numpy as np import onnxruntime as ort import onnx.helper as helper resize_node = helper.make_node( op_type="Resize", # 使用 Resize 算法 inputs=["X"], # 输入张量名称 outputs=["Y"] # 输出张量名称 ) scale_factor = [1., 1., 0.5, 0.5] # 定义缩小比例因子 roi = [] # ROI 参数为空列表表示全局范围内的 resize sizes = [] graph_def = helper.make_graph([resize_node], "test_resize", [], []) opset_imports = [helper.make_opsetid("", version=9)] model_def = helper.make_model(graph_def, producer_name="example", opset_imports=opset_imports) ort_session = ort.InferenceSession(onnx._serialize(model_def)) outputs = ort_session.run(None, {"X": np.random.rand(*input_dims)}) print(outputs['Y'].shape) # 打印经过 resize 后的结果形状 ``` 上述例子说明了怎样构建并执行一次基于指定尺度因子的空间变换操作[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值