GAMES102几何建模与处理(一)

一、函数拟合

1、函数的集合

用若干简单函数(“基函数”)线性组合张成一个函数空间

  • L = s p a n { f 1 , f 2 , … , f n } = ∑ i = 1 n a i f i ( x ) ∣ a i ∈ R L=span\{f_1,f_2,\dots,f_n \}=\sum^n_{i=1}a_if_i(x)|a_i\in R L=span{f1,f2,,fn}=i=1naifi(x)aiR
  • 每个函数就表达(对应)为n个实数,即系数向量( a 1 , a 2 , a 3 , … , a n a_1,a_2,a_3,\dots,a_n a1,a2,a3,,an
  • 空间的完备性:这个函数空间是否可以表示(逼近)任何函数
  • 在这里插入图片描述

2、赋范空间

  • 内积诱导范数、距离
    − < f , g > = ∫ a b f ( x ) g ( x ) d x -<f,g>=\int^b_a f(x)g(x)dx <f,g>=abf(x)g(x)dx
  • 度量空间:可度量函数之间的距离。
    Lp范数
  • 赋范空间+完备性=巴拿赫空间
  • 内积空间(无限维)+完备性=希尔伯特空间

3、万能逼近定理

Weierstrass逼近定理

  • 定理1:闭区间上的连续函数可用多项式级数一致逼近
  • 定理2:闭区间上周期为2π的连续函数可用三角函数级数一致逼近
  • 对于[a,b]上的任意连续函数g,及任意给定的 ξ > 0 \xi>0 ξ>0,必存在n次代数多项式 f ( x ) = ∑ k = 0 n w k x k f(x)=\sum^n_{k=0}w_kx^k f(x)=k=0nwkxk,使得
    m i n x ∈ [ a , b ] ∣ f ( x ) − g ( x ) ∣ < ξ min_{x\in[a,b]}|f(x)-g(x)|<\xi minx[a,b]f(x)g(x)<ξ

4、函数复合

在这里插入图片描述

5、如何求满足要求的函数?

  • 大部分的实际应用问题
    1、可建模为:找一个映射/变换/函数
    2、输入不一样、变量不一样、维数不一样
  • 如何找函数的三步曲:
    1、到哪找?
    确定某个函数集合/空间
    2、 找哪个?
    度量哪个函数是好的/“最好”的
    3、怎么找?
    求解或优化:不同的优化方法与技巧,既要快、又要好

二、数据拟合

  • 拟合问题
    输入:一些观察的数据点
    输出:反映这些数据规律的函数 y = f ( x ) y=f(x) y=f(x)

1、 到哪找?

1、选择一个函数空间

  • 线性函数空间 A = s p a n { B 0 ( x ) , … , B n ( x ) } A=span\{B_0(x),\dots,B_n(x)\} A=span{B0(x),,Bn(x)}
    1、多项式函数 s p a n { 1 , x , x 2 , … , x n } span\{1,x,x^2,\dots,x^n\} span{1,x,x2,,xn}
    2、RBF函数
    3、三角函数

2、函数表达

f ( x ) = ∑ k = 0 n B k ( x ) f(x)=\sum^n_{k=0}B_k(x) f(x)=k=0nBk(x)
求n+1个系数 ( a 0 , … , a n ) (a_0,\dots,a_n) (a0,,an)(待定系数)

2、找哪个?

1、目标一:函数经过每个数据点(插值)

在这里插入图片描述

2、目标二:函数尽量靠近数据(逼近)

m i n ∑ i = 0 n ( y i − f ( x i ) ) 2 min\sum^n_{i=0}(y_i-f(x_i))^2 mini=0n(yif(xi))2

3、怎么找?

1、目标一:每一个数据点都要插值(零误差)

  • 联立,求解线性方程组。
    ∑ k = 0 n a k B k ( x i ) = y i , i = 0 , 1 , … , n \sum^n_{k=0}a_kB_k(x_i)=y_i,i=0,1,\dots,n k=0nakBk(xi)=yi,i=0,1,,n
    • 求解 ( n + 1 ) × ( n + 1 ) (n+1)\times(n+1) (n+1)×(n+1)线性方程组
    • n次拉格朗日插值多项式
      病态问题:系数矩阵条件数高时,求解不稳定
  • 拉格朗日插值多项式
    插值n+1个点、次数不超过n的多项式是存在而且是唯一的
    (n+1个变量,n+1个方程)
    p k ( x ) = ∏ i ∈ B k x − x i x k − x i p_k(x)=\prod_{i\in B_k}\frac{x-x_i}{x_k-x_i} pk(x)=iBkxkxixxi
    插值函数的自由度=未知量个数-已知量个数

2、目标二:函数尽量靠近数据(逼近)

m i n ∑ i = 0 n ( y i − f ( x i ) ) 2 min\sum^n_{i=0}(y_i-f(x_i))^2 mini=0n(yif(xi))2
对各系数求导,得法方程(线性方程组)
A X = b AX=b AX=b (最小二乘)
可能存在问题
1、点多,系数少?
2、点少,系数多?
在这里插入图片描述

4、遇到的问题

1、过拟合

  • 误差为0,但是拟合的函数并无使用价值
    -

2、欠拟合

  • 拟合程度不高,数据距离拟合曲线较远

3、常用解决方法

  • 数据去噪
    剔除训练样本中的噪声
  • 数据增广
    增加样本数,或者增加样本的代表性和多样性
  • 模型简化
    1、预测模型过于复杂,拟合了训练样本中的噪声
    2、选用更简单的模型,或者对模型进行裁剪
  • 正则约束
    适当的正则项,比如方差正则项、稀疏正则项

4、例子

  • 岭回归正则项
    1、选择一个函数空间
    基函数的线性表达: W = ( w 0 , w 1 , … , w n ) W=(w_0,w_1,\dots,w_n) W=(w0,w1,,wn)
    y = ∑ i = 0 n w i B i ( x ) y=\sum^n_{i=0}w_iB_i(x) y=i=0nwiBi(x)
    • 最小二乘拟合
      m i n w ∣ ∣ Y − X W ∣ ∣ 2 min_w||Y-XW||^2 minwYXW2
    • 岭回归
      m i n w ∣ ∣ Y − X W ∣ ∣ 2 + μ ∣ ∣ W ∣ ∣ 2 2 min_w||Y-XW||^2 +\mu||W||^2_2 minwYXW2+μW22
  • 稀疏学习:稀疏正则化
    • 冗余基函数(过完备)
    • 通过优化来选择合适的基函数
      – 系数向量的 L 0 L_0 L0模( 非0元素个数)尽量小
      – 挑选(“学习”)出合适的基函数
      m i n w ∣ ∣ Y − X W ∣ ∣ 2 + μ ∣ ∣ W ∣ ∣ 0 min_w||Y-XW||^2 +\mu||W||_0 minwYXW2+μW0
      m i n w ∣ ∣ Y − X W ∣ ∣ 2 , s . t . ∣ ∣ W ∣ ∣ 0 < β min_w||Y-XW||^2 ,s.t.||W||_0<\beta minwYXW2,s.t.W0<β
  • 压缩感知
    • 已知y和Φ ,有无穷多解x
    • 对于稀疏信号x,可通过优化能完全重建x
      m i n ∣ ∣ x ∣ ∣ 0 , s . t . Φ x = y min||x||_0,s.t. \Phi x=y minx0,s.t.Φx=y
      在这里插入图片描述
      – 在一定条件下 (on Φ)

三、参考和引用

[1] bilibili:GAMES102:几何建模与处理
[2] 数据拟合.pdf

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值