GAMES102几何建模与处理(二)

本文深入探讨了数据拟合的多种方法,包括分段线性插值、光滑插值和逼近拟合函数。重点介绍了多项式插值定理,阐述了牛顿插值和拉格朗日插值的构建过程,同时揭示了多项式插值存在的病态问题。此外,还讨论了最小二乘逼近和使用正交多项式基解决这一问题。最后,提到了函数空间和基空间的概念,并引入了伯恩斯坦多项式和RBF神经网络作为拟合工具。
摘要由CSDN通过智能技术生成

一、拟合函数的“好坏”

1、 分段线性插值函数 y = f 1 ( x ) y=f_1(x) y=f1(x)

1、数据误差为0。
2、函数性质不够好:只有 C 0 C^0 C0连续,不光滑(数值计算)
C 0 C^0 C0:几何连续性中的 f a ( x ) = f b ( x ) fa(x) = fb(x) fa(x)=fb(x),即函数值相同, C n ( n > 0 ) C^n(n>0) Cn(n>0)代表了n阶导数相同)

2、光滑插值函数 y = f 2 ( x ) y=f_2(x) y=f2(x)

1、数据误差为0。
2、可能被“差数据”(噪声、outliers)带歪,导致函数性质不好、预测不可靠

3、逼近拟合函数 y = f 3 ( x ) y=f_3(x) y=f3(x)

1、数据误差不为0,但足够小。

二、多项式插值定理

1、 定理

x i x_i xi两两不相同,则对任意给定的 y i y_i yi,存在唯一的次数至多是n次的多项式 p n p_n pn,使得 p n ( x i ) = y i , i = 0 , ⋯   , n p_n(x_i)=y_i,i=0,\cdots,n pn(xi)=yi,i=0,,n

2、证明

在幂基 1 , x , x 2 , ⋯   , x n {1,x,x^2,\cdots,x^n} 1,x,x2,,xn下待定多项式p的形式为:
p ( x ) = a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n p(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n p(x)=a0+a1x+a2x2++anxn
由插值条件 p ( x i ) = y i , i = 0 , ⋯   , n p(x_i)=y_i,i=0,\cdots,n p(xi)=yi,i=0,,n,得到方程式
在这里插入图片描述
系数矩阵为Vandermonde矩阵,其行列式非零,因此方程组有唯一解。(如果基函数选取不一样,,方程组的系数矩阵不一样)

3、构建方法

1、技巧一:构造插值问题的通用解

  • 给定n+1个点 { ( x 0 , y 0 ) , ⋯   , ( x n , y n ) } \{(x_0,y_0),\cdots,(x_n,y_n)\} {(x0,y0),,(xn,yn)},寻找一组次数为n的多项式基函数 l i l_i li使得:
    l i ( x j ) = { 1 , i = j 0 , i ≠ j l_i(x_j)=\begin{cases} 1,\quad i=j\\ 0, \quad i\not=j \end{cases} li(xj)={1,i=j0,i=j
    插值问题的解为:
    P ( x ) = y 0 l 0 ( x ) + y 1 l 1 ( x ) + ⋯ + y n l n ( x ) = ∑ i = 0 n y i l i ( x ) P(x)=y_0l_0(x)+y_1l_1(x)+\cdots+y_nl_n(x)=\sum^n_{i=0}y_il_i(x) P(x)=y0l0(x)+y1l1(x)++ynln(x)=i=0nyili(x)
  • 如何计算
    n阶多项式,且有以下n个根
    x 0 , x 1 , x 2 , ⋯   , x n x_0,x_1,x_2,\cdots,x_n x0,x1,x2,,xn
    故可表示为:
    l i ( x ) = C i ( x − x 0 ) ( x − x 1 ) ⋯ ( x − x i − 1 ) ( x − x i + 1 ) ⋯ ( x − x n ) = C i ∏ j ≠ i ( x − x j ) l_i(x)=C_i(x-x_0)(x-x _1)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_{n}) =C_i\prod_{j\not=i}(x-x_j) li(x)=Ci(xx0)(xx1)(xxi1)(xxi+1)(xxn)=Cij=i(xxj)
    由上面的 l i ( x i ) = 1 l_i(x_i)=1 li(xi)=1,可得
    1 = C i ∏ j ≠ i ( x i − x j ) ⇒ C i = 1 ∏ j ≠ i ( x i − x j ) 1=C_i\prod_{j\not=i}(x_i-x_j)\Rightarrow C_i=\frac{1}{\prod_{j\not=i}(x_i-x_j)} 1=Cij=i(xixj)Ci=j=i(xixj)1
    最终多项式基函数:
    l i ( x ) = ∏ j ≠ i ( x − x j ) ∏ j ≠ i ( x i − x j ) l_i(x)=\frac{\prod_{j\not=i}(x-x_j)}{\prod_{j\not=i}(x_i-x_j)} li(x)=j=i(xixj)j=i(xxj),该式被称为拉格朗日多项式

2、技巧二:更方便的求解表达

  • 牛顿插值:具有相同“导数”(差商)的多项式构造(n阶泰勒展开)
  • 定义:
    一阶差商: f [ x 0 , x 1 ] = f ( x 1 ) − f ( x 0 ) x 1 − x 0 f[x_0,x_1]=\frac{f(x_1)-f(x_0)}{x_1-x_0} f[x0,x1]=x1x0f(x1)f(x0)
    k阶差商:
    { x 0 , x 1 , ⋯   , x k } \{x_0,x_1,\cdots,x_k\} {x0,x1,,xk}互不相同, f ( x ) f(x) f(x)关于 { x 0 , x 1 , ⋯   , x k } \{x_0,x_1,\cdots,x_k\} {x0,x1,,xk}的k阶差商为:
    f [ x 0 , x 1 , ⋯   , x k ] = f [ x 1 , ⋯   , x k ] − f [ x 0 , x 1 , ⋯   , x k − 1 ] x k − x 0 f[x_0,x_1,\cdots,x_k]=\frac{f[x_1,\cdots,x_k]-f[x_0,x_1,\cdots,x_{k-1}]}{x_k-x_0} f[x0,x1,,xk]=xkx0f[x1,,xk]f[x0,x1,,xk1]
    牛顿多项式插值为:
    N n ( x 0 ) = f ( x 0 ) + f [ x 1 , x 0 ] ( x − x 0 ) + ⋯ + f [ x 0 , x 1 , x 2 , ⋯   , x n ] ( x − x 0 ) ⋯ ( x − x n − 1 ) N_n(x_0)=f(x_0)+f[x_1,x_0](x-x_0)+\cdots+f[x_0,x_1,x_2,\cdots,x_n](x-x_0)\cdots (x-x_{n-1}) Nn(x0)=f(x0)+f[x1,x0](xx0)++f[x0,x1,x2,,xn](xx0)(xxn1)

4、存在的问题

  • 系数矩阵过于稠密
  • 依赖于基函数选取,矩阵可能病态,导致难于求解(求逆)

1、病态问题

  • 输入数据的细微变化导致输出(解)的剧烈变化
  • 将线性方程看成直线(超平面)
    • 当系统病态时,直线变为近似平行
    • 求解(即直线相交)变得困难、不精确
  • 矩阵条件数
    K 2 ( A ) = m a x x ≠ 0 ∣ ∣ A x ∣ ∣ ∣ ∣ x ∣ ∣ m i n x ≠ 0 ∣ ∣ A x ∣ ∣ ∣ ∣ x ∣ ∣ K_2(A)=\frac{max_{x\not= 0}\frac{||A_x||}{||x||}}{min_{x\not= 0}\frac{||A_x||}{||x||}} K2(A)=minx=0xAxmaxx=0xAx
    • 等于最大特征值和最小特征值之间比例
    • 条件数大意味着基元之间有太多相关性
    • 多项式插值问题是病态的
      对于等距分布的数据点 x i x_i xi,范德蒙矩阵的条件数随着数据点数n呈指数级增长(多项式的最高次数为n-1)

2、原因

  • 幂(单项式)函数基
    1、 幂函数之间差别随着次数增加而减小
    2、不同幂函数唯一差别为增长速度( x i x_i xi x i − 1 x_{i-1} xi1增加快)

3、方法

  • 使用正交多项式基

4、结论

  • 多项式插值不稳定
    控制点的微小变化可导致完全不同的结果
  • 振荡(Runge)现象
    多项式随着插值点数(可以是细微)增加而摆

三、多项式逼近

1、为什么

  • 数据点含噪声、异常值等
  • 更紧凑的表达
  • 计算简单、更稳定

2、最小二乘逼近

1、 逼近问题

  • 给定一组线性无关的连续函数集合 B = { b 1 , ⋯   , b n } B=\{b_1,\cdots,b_n\} B={b1,,bn}和一组结点 { ( x 1 , y 1 ) , ⋯   , ( x m , y m ) } \{(x_1,y_1),\cdots,(x_m,y_m)\} {(x1,y1),,(xm,ym)},m>n
  • 在B张成空间中哪个函数 f ∈ s p a n ( B ) f\in span(B) fspan(B)对结点逼近?

2、最佳逼近的定义

最小二乘逼近: a r g m i n f ∈ s p a n ( B ) ∑ j = 1 n ( f ( x j ) − y j ) 2 argmin_{f\in span(B)} \sum^n_{j=1}(f(x_j)-y_j)^2 argminfspan(B)j=1n(f(xj)yj)2
∑ j = 1 m ( f ( x j ) − y j ) 2 = ∑ j = 1 m ( ∑ i = 1 n ( λ i b i ( x j ) − y j ) 2 ) = ( M λ − y ) T ( M λ − y ) = λ T M T M λ − y T M λ − λ T M T y + y T y = λ T M T M λ − 2 y T M λ + y T y \sum^m_{j=1}(f(x_j)-y_j)^2=\sum^m_{j=1}(\sum^n_{i=1}(\lambda_i b_i(x_j)-y_j)^2)=(M\lambda-y)^T(M\lambda-y)=\lambda^TM^TM\lambda-y^TM\lambda-\lambda^TM^Ty+y^Ty=\lambda^TM^TM\lambda-2y^TM\lambda+y^Ty j=1m(f(xj)yj)2=j=1m(i=1n(λibi(xj)yj)2)=(Mλy)T(Mλy)=λTMTMλyTMλλTMTy+yTy=λTMTMλ2yTMλ+yTy

3、求解

  • 关于 λ \lambda λ的二次多项式:
    λ T M T M λ − 2 y T M λ + y T y \lambda^TM^TM\lambda-2y^TM\lambda+y^Ty λTMTMλ2yTMλ+yTy
  • 法方程
    最小解满足:
    M T M λ = M T y M^TM\lambda=M^Ty MTMλ=MTy
  • 提示
    最小化二次目标函数 x T A x + b T x + c x^TAx+b^Tx+c xTAx+bTx+c
    充分必要条件: 2 A x = − b 2Ax=-b 2Ax=b

四、函数空间及基空间

1、为什么使用多项式?

  • 易于计算,表现良好,光滑
  • 稠密行与完备性:表达能力足够

1、魏尔斯特拉斯Weierstrass定理

令f为闭区间 [ a , b ] [a,b] [a,b]上任意连续函数,则对任意给定 ε \varepsilon ε,存在n和多项式 P n P_n Pn使得:
∣ f ( x ) − P n ( x ) ∣ < ε , ∀ x ∈ [ a , b ] |f(x)-P_n(x)|<\varepsilon,\forall x \in [a,b] f(x)Pn(x)<ε,x[a,b]

  • Weierstrass只证明了存在性。

2、用Bernstein多项式做逼近

1、 伯恩斯坦Bernstein给出了构造性证明。

  • [ 0 , 1 ] [0,1] [0,1]区间上任意连续函数 f ( x ) f(x) f(x)和任意正整数 n n n,以下不等式对所有 x ∈ [ 0 , 1 ] x\in [0,1] x[0,1]成立, f ( x ) − B n f ( x ) < 9 4 m f , n f(x)-B_nf(x)<\frac{9}{4}m_{f,n} f(x)Bnf(x)<49mf,n
  • m f , n = ∣ f ( y 1 ) − f ( y 2 ) ∣ m_{f,n}=|f(y_1)-f(y_2)| mf,n=f(y1)f(y2)的上下线, y 1 , y 2 ∈ [ 0 , 1 ] y1,y2\in[0,1] y1,y2[0,1] ∣ y 1 − y 2 ∣ < 1 n |y_1-y_2|<\frac{1}{\sqrt{n}} y1y2<n 1
  • B n ( f , x ) = ∑ j = 0 n f ( x j ) b n , j ( x ) B_n(f,x)=\sum^n_{j=0}f(x_j)b_{n,j}(x) Bn(f,x)=j=0nf(xj)bn,j(x),其中 x j x_j xj [ 0 , 1 ] [0,1] [0,1]上等距采样点
  • b n , j = ( n j ) x j ( 1 − x ) n − j b_{n,j}=\left( \begin{matrix} n\\ j \end{matrix} \right)x^j(1-x)^{n-j} bn,j=(nj)xj(1x)nj为Bernstein多项式
  • 具有非常好的几何意义。
    正性、权性(和为1) ⇒ \Rightarrow 凸包性
    变差缩减性
    递归线性求解方法
    细分性

3、RBF插值/逼近

1、Gauss函数

  • 两个参数:均值 μ \mu μ,方差 σ \sigma σ
    g μ , σ ( x ) = 1 2 e − ( x − μ ) 2 2 σ 2 g_{\mu,\sigma}(x)=\frac{1}{\sqrt 2}e^{\frac{-(x-\mu)^2}{2\sigma^2}} gμ,σ(x)=2 1e2σ2(xμ)2
  • 几何意义:
    均值:位置
    方差:支集宽度

2、RBF拟合

f ( x ) = b 0 + ∑ i = 1 n b i g i ( x ) f(x)=b_0+\sum^n_{i=1}b_ig_i(x) f(x)=b0+i=1nbigi(x)
问题:均值和方差是否可以一起优化?

4、 从另一个角度看拟合函数

1、Gauss拟合函数

  • 一般Gauss函数表达为标准Gauss函数的形式
    g μ , σ ( x ) = 1 2 e − ( x − μ ) 2 2 σ 2 = 1 2 e − 1 2 ( x σ − μ σ ) 2 = g 0 , 1 ( a x + b ) , a = x σ , b = μ σ g_{\mu,\sigma}(x)=\frac{1}{\sqrt 2}e^{\frac{-(x-\mu)^2}{2\sigma^2}}=\frac{1}{\sqrt 2}e^{-\frac{1}{2}(\frac{x}{\sigma} -\frac{\mu}{\sigma})^2}=g_{0,1}(ax+b),a=\frac{x}{\sigma},b=\frac{\mu}{\sigma} gμ,σ(x)=2 1e2σ2(xμ)2=2 1e21(σxσμ)2=g0,1(ax+b),a=σx,b=σμ
    f ( x ) = b 0 + ∑ i = 1 n b i g i ( x ) ⇒ w 0 + ∑ i = 1 n w i g 0 , 1 ( a i x + b i ) f(x)=b_0+\sum^n_{i=1}b_ig_i(x) \Rightarrow w_0+\sum^n_{i=1}w_ig_{0,1}(a_ix+b_i) f(x)=b0+i=1nbigi(x)w0+i=1nwig0,1(aix+bi)(基函数是由一个基本函数通过平移和伸缩变换而来的)

2、换个方式看函数:神经网络

在这里插入图片描述

3、RBF神经网络

  • 高维情况:RBF(Radial Basis Function),径向基函数
  • 一种特殊的BP网络
    • 优化:BP算法
  • 核函数思想
  • Gauss函数特性:拟局部性

4、用神经网络函数来拟合数据

  • 为什么能行?
    万能逼近定理:自由度足够多
  • 与传统拟合一样存在同样的问题:函数个数如何选?
    调参
    在这里插入图片描述

五、总结

1、一元函数的数据拟合的方法

1、到哪找?

  • 确定某个函数集合(“池子”),具有某个结构容易表达(比如线性函数空间),且尽量广泛(表达能力强)

2、找哪个?

  • 度量哪个函数是好的/“最好”的,定义损失函数,包括数据误差 项(逼近数据的度量)与正则项(对函数性质的度量)

3、怎么找?

  • 优化求解:不同的优化方法与技巧。
    • 线性问题:解线性方程或线性方程组
    • 非线性问题:
      • 凸问题:有理论保证
      • 非凸问题:难!数值求解( 梯度下降法、牛顿法、拟牛顿法、L‐BFGS、 … ),须选择合适初值、步长等;一般要根据具体的优化问题形式及特点来设计合适的优化方法!

六、参考和引用

[1] bilibili:GAMES102:几何建模与处理
[2] 数据拟合1.pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值