特征选择--基于sklearn

一、分类问题

1、卡方检验

    特征变量为类别变量,目标变量为目标变量。

2、f_classif

        原理是方差分析,计算方差分析(ANOVA)的F值 (组间均方 / 组内均方)。可以根据样本的某个特征的f值来判断特征对预测类别的帮助,F值越大,越有信心拒绝独立的假设,预测能力也就越强,相关性就越大,从而基于此可以进行特征选择。

        要求其中一个变量是离散型的类别变量,在这个场景下就支持特征变量为连续变量的场景了。但不支持两个变量都连续的问题。

3、mutual_info_classif

       互信息,互信息方法可以捕捉任何一种统计依赖,但是作为非参数方法,需要更多的样本进行准确的估计。从互信息的定义可知它对特征变量是连续还是离散没有要求。

 

二、回归问题

1、f_regression

相关系数,计算每个变量与目标变量的相关系数,然后计算出F值和P值。

2、mutual_info_regression

互信息,互信息度量 X 和 Y 共享的信息:它度量知道这两个变量其中一个,对另一个不确定度减少的程度。对特征变量是连续还是离散没有要求。

 

参考网址:

https://scikit-learn.org/stable/modules/feature_selection.html#univariate-feature-selection

https://www.jianshu.com/p/b3056d10a20f

https://blog.csdn.net/jetFlow/article/details/78884619

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值