泰勒公式的严谨证明

假设f(x)=a_{0}+a_{1}(x-x_{0})+a_{2}(x-x_{0})^{2}+a_{3}(x-x_{0})^{3}+...+a_{n}(x-x_{0})^{n}+R(x)

其中R^{(n)}(x_{0})=0,f(x),R(x)为连续函数,x_{0}为f(x)定义域内的一点.

那么必须满足f(x_{0})=a_{0},f^{(1)}(x_{0})=a_{1},f^{(2)}(x_{0})=2a_{2},...,f^{(n)}(x_{0})=n!a_{n}

所以a_{n}=\frac{f^{(n)}(x_{0})}{n!}

那么原式可写成f(x)=\sum_{n=1}^{n}\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}+R(x)

接下来,对两边进行求导得:f^{(n)}(x)=f^{(n)}(x_{0})+R^{(n)}(x)

所以f^{(n)}(x)-f^{(n)}(x_{0})=R^{(n)}(x)

两边同时除(x-x_{0})得:\frac{f^{(n)}(x)-f^{(n)}(x_{0})}{x-x_{0}}=\frac{R^{(n)}(x)}{x-x_{0}}

那么由拉格朗日中值定理可知:x_{0}与x之间必有一点\varepsilon使得上式变为:

f^{(n+1)}(\varepsilon )=\frac{R^{(n)}(x)}{x-x_{0}},最后两边同时积分,由于R^{(n)}(x_{0})=0,故R(x)=\frac{f^{(n+1)}(\varepsilon )}{(n+1)!}(x-x_{0})^{n+1}

所以f(x)=f(x)=\sum_{n=1}^{n}\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}+\frac{f^{(n+1)}(\varepsilon )}{(n+1)!}(x-x_{0})^{n+1}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值