参数估计(平差 / 滤波)中的一些名词概念的理解与区分

Part.I 名词释义

Chap.I 估计的含义

所谓估计就是根据测量得出的与状态 X ( t ) X\left( t \right) X(t) 有关的数据 L ( t ) = h [ X ( t ) ] + V ( t ) L\left( t \right)=h\left[ X\left( t \right) \right]+V\left( t \right) L(t)=h[X(t)]+V(t) 解算出 X ( t ) X\left( t \right) X(t) 的计算值 X ^ ( t ) \hat{X}\left( t \right) X^(t) ,其中 V ( t ) V\left( t \right) V(t) 为量测误差, X ^ \hat{X} X^ 称为 X X X 的估计, L L L 称为对与 X X X 相关量的量测。因为 X ^ ( t ) \hat{X}\left( t \right) X^(t) 是根据 L ( t ) L\left( t \right) L(t) 确定的,所以 X ^ ( t ) \hat{X}\left( t \right) X^(t) L ( t ) L\left( t \right) L(t) 的函数。若 X ^ \hat{X} X^ L L L 的线性函数,则 X ^ \hat{X} X^ 称作 X X X 的线性估计。

设在 [ t 0 , t 1 ] \left[ {{t}_{0}},{{t}_{1}} \right] [t0,t1] 时间段内的量测为 L L L ,相应的估计为 X ^ ( t ) \hat{X}\left( t \right) X^(t) ,则

  • t = t 1 t={{t}_{1}} t=t1 时, X ^ ( t ) \hat{X}\left( t \right) X^(t) 称为 X ( t ) X\left( t \right) X(t) 的估计(滤波);
  • t > t 1 t>{{t}_{1}} t>t1 时, X ^ ( t ) \hat{X}\left( t \right) X^(t) 称为 X ( t ) X\left( t \right) X(t) 的预测或外推;
  • t < t 1 t<{{t}_{1}} t<t1 时, X ^ ( t ) \hat{X}\left( t \right) X^(t) 称为 X ( t ) X\left( t \right) X(t) 的平滑或内插。

最优估计是指某一指标函数达到最值时的估计。

  • 若以量测估计 L ^ \hat{L} L^ 的偏差的平方和达到最小为指标,即
    ( L − L ^ ) T ( L − L ^ ) = min ⁡ {{\left( L-\hat{L} \right)}^{T}}\left( L-\hat{L} \right)=\min (LL^)T(LL^)=min
    则所得估计 X ^ \hat{X} X^ X X X 的最小二乘估计;
  • 若以状态估计 X ^ \hat{X} X^ 的均方误差的期望达到最小为指标,即
    E [ ( X − X ^ ) T ( X − X ^ ) ] = min ⁡ E\left[ {{\left( X-\hat{X} \right)}^{T}}\left( X-\hat{X} \right) \right]=\min E[(XX^)T(XX^)]=min
    则所得估计 X ^ \hat{X} X^ X X X 的最小方差估计;若 X ^ \hat{X} X^ 又是 X X X 的线性估计,则 X ^ \hat{X} X^ X X X 的线性最小方差估计。

也可用估计值出现的概率作为估计指标,这样的估计有极大验后估计、贝叶斯估计和极大似然估计。

Chap.II 关于参数类型

需要求定的最佳估值的参数一般有两种:第一种是非随机的和先验统计性质未知的,或者先验统计性质虽已知,但在求估值时不予考虑的参数;第二种是已知其先验统计性质,并在求定其估值时考虑这种性质的参数。为了做区分,将第一种参数仍称为参数,或倾向参数,它就是最小二乘平差中的未知数;而第二种参数称为信号,信号又分为与观测向量建立函数模型的信号(滤波信号),另一类是没有与观测向量建立函数模型的信号(推估信号)。

上述文字绘制成关系图大致如下:

Chap.III 关于数据处理方法

简单来讲,平差是指只考虑倾向参数(非随机参数),滤波是指考虑信号(随机参数),配置是指既考虑倾向参数(非随机参数)又考虑信号(随机参数)。

  • 最小二乘估计:最小二乘估计是一种利用含有误差(或噪声)的观测值求定参数的最佳估值的方法。这个“最佳”指的是当量测值估值与量测值的观测值的偏差的平方和达到最小,这个时候认为得到的参数估值为最佳的。“最小二乘”指的是量测值的观测值与估值的平方和达到最小。
  • 最小方差估计:最小方差估计是一种以估计误差的方差最小作为准则的估计方法,若此参数估值的方差比其他估值的方差都要小,则认为这个估值就是最优估值。
  • 滤波:滤波本来的含义是从接受的电磁波信号中,排除各种噪声的干扰。对于一般的数据处理问题,滤波就是通过对一系列带有误差的实际观测数据的处理,得出所需要的参数的最佳估值的方法。而在测量平差中,我们将滤波看做是一种利用含有误差(或噪声)的观测值求定参数的最佳估值的方法。这种方法和最小二乘平差的区别是:最小二乘平差法是将全部待估参数都当作非随机量,或不考虑参数的随机性质,按照经典和相关最小二乘原理求定其最佳估值;滤波则是将全部参数都作为正态随机量,按照极大验后估计、最小方差估计或广义最小二乘原理来求定参数的最佳估值。当已知参数的先验统计性质已知时,由于滤波考虑了这种性质,因此所得到的估值比最小二乘平差估值具有更高的精度。
  • 配置(Collocation)也称为拟合推估。最初是指组合各种资料来研究地球形状与重力场的一种数学方法,其理论由Trarup于1969年提出。在地球形状重力的研究中,配置的普遍形式是其函数模型中除包含随即部分外,还包含非随机部分(也称为倾向)。这种兼有求定信号和倾向参数的情况在其他测量平差问题中也往往会出现,用广义最小二乘平差原理平差这类问题,故称为最小二乘配置,简称为配置法。此外,在地球形状重力场以及其他平差问题中,常需要求定的是推估信号的最佳估值和倾向参数的最佳估值,而倾向参数又往往是某种拟合函数的系数,因此配置法又称为拟合推估。

Part.II 含义区分理解

下面是一个大表格

Chap.I 各种数据处理方法优缺点及适用性

由于各种估计满足的最优指标不一样,利用的信息不一样,所以适用的对象、达到的精度和计算的复杂性各不一样。

  • 最小二乘估计 适用于对常值向量或随机向量的估计。由于使用的最优指标是使量测估计的精度达到最佳,估计中不必使用与被估计量有关的动态信息与统计信息,甚至连量测误差的统计信息也可不必使用,所以估计精度不高。这种方法的最大优点是算法简单,在对被估计量和量测误差缺乏了解的情况下仍能适用,所以至今仍被大量采用。
  • 最小方差估计 是所有估计中估计的均方误差为最小的估计,是所有估计中的最佳者。但这种最优估计只确定出了估计值是被估计量在量测空间上的条件均值这一抽象关系。一般情况下条件均值须通过条件概率密度求取,而条件概率密度的获取本身就非易事,所以按条件均值的一般求法求取最小方差估计是很困难的。
  • 线性最小方差估计 是所有线性估计中的最优者,只有当被估计量和量测量都服从正态分布时,线性最小方差估计才与最小方差估计等同,即在所有估计中也是最优的。线性最小方差估计可适用于随机过程的估计,估计过程中只须知道被估计量和量测量的一阶和二阶矩。对于平稳过程,这些一阶和二阶矩都为常值,但对非平稳过程,一阶和二阶矩随时间而变,必须确切知道每一估计时刻的一、二阶矩才能求出估计值,这种要求是十分苛刻的。所以线性最小方差估计适用于平稳过程而难以适用非平稳过程。估计过程中不同时刻的量测量使用得越多,估计精度就越高,但矩阵求逆的阶数也越高,计算量也越大。
  • 极大验后估计、贝叶斯估计、极大似然估计 都与条件概率密度有关,除一些特殊的分布外,如正态分布情况,计算都十分困难。这些估计常用于故障检测和识别的算法中。
  • 序贯最小二乘平差:又叫逐次相关间接平差或递推最小二乘平差,是对最小二乘平差的一个改进,这个改进体现在:当观测量比较多时,序贯最小二乘平差将观测值分成两组或多组,按组的顺序分别做相关间接平差,从而使其达到与两期或多期数据一起做整体平差同样的结果。
  • 静态逐次滤波:在静态滤波(求定信号也即随机参数的最佳估值的方法)与配置(求定信号兼倾向参数也即非随机参数的方法)问题中,当观测值的个数很大时,为了解决高阶矩阵求逆的困难和计算机容量不足的问题,可以将观测向量分成若干部分,逐次进行计算,称为静态逐次滤波与配置。
  • 维纳滤波 是线性最小方差估计的一种。维纳滤波器是一种线性定常系统,适用于对有用信号和干扰信号都是零均值的平稳随机过程的处理。设计维纳滤波器时必须知道有用信号和干扰信号的自功率谱和互功率谱。当功率谱都是有理分式时,可采用伯特-香农设计法求取具有滤波功能的维纳滤波器的传递函数。对于复杂的有用信号和干扰信号,功率谱并非有理谱,此时可将功率谱拟合成有理谱后按伯特-香农法进行设计。与卡尔曼滤波相比,维纳滤波在适用范围、设计方法等方面存在着诸多不足,但对于被估计参量较少的情况,如直升飞机悬停时仅须对高度作估计,结合使用数字滤波技术,维纳滤波仍不失为一种简单而有效的方法。
  • 卡尔曼滤波 (Kalman Filter,KF)是一种线性最小方差估计,它具有如下特点:1)算法是递推的,且使用状态空间法在时域内设计滤波器,所以卡尔曼滤波适用于对多维随机过程的估计。2)采用动力学方程即状态方程描述被估计量的动态变化规律,被估计量的动态统计信息由激励白噪声的统计信息和动力学方程确定。由于激励白噪声是平稳过程,动力学方程已知,所以被估计量既可以是平稳的,也可以是非平稳的,即卡尔曼滤波也适用于非平稳过程。3)卡尔曼滤波具有连续型和离散型两类算法,离散型算法可直接在数字计算机上实现。正由于上述特点,卡尔曼滤波理论一经提出立即受到了工程应用的重视,阿波罗登月飞船和C-5A飞机导航系统的设计是早期应用中的最成功者。
  • 扩展的卡尔曼滤波 Extended Kalman Filter (EKF) 将非线性模型进行线性化处理(泰勒展开并忽略高阶项)
  • 无迹卡尔曼滤波(Unscented Kalman Filter,UKF),是无损变换(Unscented Transform,UT变换)与标准卡尔曼滤波体系的结合,通过无损变换变换使非线性系统方程适用于线性假设下的标准卡尔曼体系。
  • 联邦卡尔曼滤波(Federal Kalman Filter,FKF),联邦滤波器是一种两级滤波,分为子滤波器和主滤波器。各子滤波器的局部估计及其协方差送入到主滤波器,和主滤波器的估计值一起进行融合得到全局最优估计1

Chap.II 一些问题及回答

【1】方差分量估计的赫尔默特法与二次无偏估计的参数是否一致?为什么?它们的区别与联系?

【答】:单一的控制网,其观测值数据类型是单一的,那么在定权的时候是直接利用定权公式来定权。如果观测值的种类很多,就会出现它们的权比不恰当,导致参数估值的质量非常差。为了提高参数估值质量,就必须要进行平差随机模型的验后估计。估计完之后再把它和验前方差重新进行定权,(估计之后当作验前方差,再进行定权)之后再进行平差。(必须进行平差随机模型的验后估计)之后再进行平差,所以方差估计和参数估计是同时进行的。
平差前参数或观测值方差未知,可能定权不合理,导致平差结果不好平差随机模型验后估计就是解决这个问题。赫尔墨特方差分量估计是将观测值分成独立的若干类,二次无偏方差分量估计是将误差因素分成独立的若干类,后一种方法隐含前一种方法。
赫尔莫特方差分量估计是对不同类的观测值估计其方差因子以及协方差,而它不能估计同一类观测值的不同的误差影响因素,即无法对此进行区分。而二次无偏估计可以把同一类观测值当中不同的误差影响因素考虑进去,比如之前讲的一个测距的例子,测距是和固定误差和比例误差有关系的。
误差模型方面:
区别:前者:估计不同类的观测值的方差因子;后者:估计同一类观测值不同因素的方差因子。
联系:都是进行方差分量估计的一种方法。最小范数二次无偏估计可以导出赫尔默特估计。


【2】如何理解验前和验后?(个人理解 2024-01-28
【答】:在平差中,观测值的验前协因数阵为 Q L L = Q Q_{LL}=Q QLL=Q,平差之后的观测值的验后协因数阵为 Q L ^ L ^ = B N B B − 1 B T Q_{\hat L\hat L}=BN_{BB}^{-1}B^T QL^L^=BNBB1BT。在卡尔曼滤波中,用 k − 1 k-1 k1 时刻的状态去预测 k k k 时刻的状态叫验前,加了 k k k 时刻的观测值对预测的状态进行修正叫做验后。

Reference


  1. 联邦滤波器 ↩︎

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

流浪猪头拯救地球

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值