R语言机器学习算法实战系列(七)朴素贝叶斯分类算法分类器 (Naïve Bayes Classifier)

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!

在这里插入图片描述

介绍

朴素贝叶斯分类算法(Naive Bayes Classifier)是一种基于贝叶斯定理的简单概率分类器。它的“朴素”假设是特征之间相互独立,即每个特征对于发生的概率是独立的,不考虑特征之间的相互作用。

在这里插入图片描述

算法原理:

  1. 贝叶斯定理:朴素贝叶斯分类器基于贝叶斯定理,该定理描述了给定某些先验知识下事件发生的概率。在分类问题中,我们想要计算的是给定观测数据属于某个类别的概率。
  2. 特征条件独立性假设:朴素贝叶斯分类器假设特征之间相互独立。
  3. 概率计算:使用贝叶斯定理,我们可以计算后验概率。
  4. 先验概率
### 实现朴素贝叶斯分类器 #### 使用Python实现高斯朴素贝叶斯分类器 为了构建一个能够区分不同类型的窗户玻璃的模型,可以采用Gaussian Naive Bayes算法。此方法适用于连续型数据集,在训练阶段会计算各个类别下特征值的概率分布函数参数均值μ和标准差σ。对于新的样本点,则依据这些已知条件来预测其最可能属于哪个类目[^1]。 ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB import pandas as pd # 加载鸢尾花数据集作为例子 data = load_iris() X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.5, random_state=0) gnb = GaussianNB() # 训练模型 gnb.fit(X_train, y_train) # 预测测试集中每个实例所属类别 y_pred = gnb.predict(X_test) print(f"Number of mislabeled points out of a total {X_test.shape[0]} points : {(y_test != y_pred).sum()}") ``` 上述代码展示了如何利用`scikit-learn`库中的`GaussianNB()`函数快速搭建并评估一个简单的高斯朴素贝叶斯分类器性能。这里选择了经典的Iris数据集来进行实验验证。 #### 基于情感分析的应用案例 除了用于物理属性识别外,朴素贝叶斯同样广泛应用于自然语言处理领域内的文本分类任务之中,比如情绪倾向度量(即正面还是负面)。通过收集大量带有标签的文章片段组成语料库之后,再借助TF-IDF向量化工具转换成数值形式输入给机器学习框架完成最终建模工作[^2]。 ```python from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.pipeline import Pipeline from sklearn.metrics import accuracy_score reviews = ["This movie was terrible", "The plot had some interesting twists"] labels = ['negative', 'positive'] vectorizer = TfidfVectorizer(stop_words='english') classifier = Pipeline([ ('tfidf', vectorizer), ('clf', MultinomialNB()) ]) # 将评论列表与对应的情感极性一起送入管道进行拟合操作 classifier.fit(reviews, labels) test_review = ["It is an amazing film!"] predicted_label = classifier.predict(test_review)[0] print(predicted_label) ``` 这段脚本说明了怎样创建一个多步流程对象——Pipeline,它内部封装了一个Tf-idf词频统计模块以及多项式分布版本的Naïve Bayes估计器MultinomialNB(),从而实现了端到端的情绪检测功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信学习者1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值