AI大模型的本地驯服——如何在自己电脑上训练一个专属大模型

1.前言

2025年3月12日记 这是我第一次实现大模型的微调训练,电脑的配置是显卡NVIDIA GeForce RTX 3050 Ti Laptop GPU,三年前的笔记本了,不过还是能跑起来的,训练的是Deep Seek-r1 的 1.5B 模型,之前跑 7B 的直接卡死了。如果大家有更好的显卡,可以尝试一下。在此非常感谢CSDN的大佬,在他们的基础上,我的博客进一步完善一些细节,文末会附上大佬的原文链接。那么废话不多说,直接开始!(默认大家有一定的基础)

2.训练模型
2.1 基础配置

(具体的安装和使用教程网上有很多,在这里就不做过多的赘述了)

  1. 使用Anaconda(Python的环境管理工具),这样就不需要一个一个单独下载python的版本,并且使用起来很方便。

  2. 使用PyCharm(Python的集成开发环境),可以在这里面编辑、运行.py文件等操作。

  3. 使用Git(分布式版本控制系统),用于克隆GitHub上的优秀项目,不用也没事,可以直接下载.zip文件。

  4. 使用CUDAcuDNN(用于GPU训练加速),需要注意这里面的版本关系,别下错了。

  5. 使用PyTorch(深度学习框架),这个版本要与你自己电脑的CUDA版本对应。

以上就是环境配置需要的全部内容,接下来我们就进行项目复刻。

2.2 初始化环境

打开Anaconda Prompt(从Windows开始菜单找到),执行

创建新的虚拟环境

conda create -n llama python=3.10

激活虚拟环境

conda activate llama

安装PyTorch(我的CUDA是12.4,选择支持你们自己电脑的CUDA的版本)

conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 pytorch-cuda=12.4 -c pytorch -c nvidia

克隆GitHub项目

git clone https://github.com/hiyouga/LLaMA-Factory.git

或者直接下载压缩包,如图所示

github

下载完成后直接在PyCharm中打开项目

pycharm

在使用大佬的安装指令时出现问题,AI教我加了一个镜像源,好用

pip install -e ".[torch,metrics]" -i https://pypi.tuna.tsinghua.edu.cn/simple/

验证安装(出现版本号就成功了)

llamafactory-cli version

version

2.3下载大模型

在终端输入如下指令,修改大模型存放位置(选择一个合适足够大的存储位置)

echo $env:HF_HOME = "E:\soft\Hugging-Face"

修改大模型下载位置(这个一般不需要修改)

echo $env:HF_ENDPOINT="https://hf-mirror.com"

安装huggingface_hub(如果第一个下载爆红,可以试试第二个镜像源)

pip install -U huggingface_hub
pip install -U huggingface_hub -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple

install

下载训练模型

huggingface-cli download --resume-download deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
2.4制作训练集(json格式)
  {
    "instruction": "你叫什么?是谁发明了你?",
    "input": "",
    "output": "您好,我名为 小白智能助手,是 AIOT工作室 发明的 AI 助手。我的任务是为用户提供有针对性的解答和支持。"
  },

data

配置训练集

在这里插入图片描述

2.5启动LLama-Factory 的可视化微调界面(http://localhost:7860/)
llamafactory-cli webui

train

选择自己的训练数据集

dataset

训练的超参数根据自己的需求调整,这些参数设置是AI告诉我的,并不是最好的,可以自己摸索一下

setting

点击开始训练

trainstart

在pycharm和网页可以查看训练进度

pycharm进度

web进度

训练完毕

finsh

2.6在线使用

use

chat

驯服成功 DeepSeek-R1-1.5B模型!!!

chatai

2.7模型导出

选择一个内存足够的盘符进行导出

export

2.8本地使用

创建一个新环境,跟之前的训练环境隔开,如果不使用python做前端界面可以省略这一步

  1. 新建deepspeekApi虚拟环境
conda create -n deepspeekApi python=3.10
  1. 激活虚拟环境deepspeekApi
conda activate deepspeekApi
  1. 下载所需依赖
conda install -c conda-forge fastapi uvicorn transformers pytorch
pip install safetensors sentencepiece protobuf
  1. 现在就可以使用python代码进行本地调用,效果如下

本地使用

  1. 使用python编程实现上述功能,采用gradio框架进行快速开发部署(http://localhost:7860/)
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import gradio as gr

# 模型路径
model_path = r"E:\DeepSeek-merged"  # 这里选择自己保存的路径

# 加载模型和tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype=torch.float16 if device == "cuda" else torch.float32
).to(device)


def generate_response(message, history):
    try:
        # 将历史对话拼接成prompt
        prompt = "\n".join([f"用户:{h[0]}\n助手:{h[1]}" for h in history]) + f"\n用户:{message}\n助手:"

        # 编码输入
        inputs = tokenizer(prompt, return_tensors="pt").to(device)

        # 生成回复
        outputs = model.generate(
            inputs.input_ids,
            max_length=1000,
            min_length=30,
            top_p=0.85,
            temperature=0.6,
            repetition_penalty=1.2,
            no_repeat_ngram_size=3,
            num_beams=4,
            do_sample=True,
            early_stopping=True
        )

        # 解码并提取新生成的回复
        response = tokenizer.decode(outputs[0][inputs.input_ids.shape[-1]:],
                                    skip_special_tokens=True)

        return response

    except Exception as e:
        return f"生成回复时出错:{str(e)}"


# 创建Gradio界面
demo = gr.ChatInterface(
    fn=generate_response,
    title="AI问答助手",
    description="AIOT工作室开发的智能助手",
    examples=["你好!你是谁?", "你能做什么?"],
    theme="soft"
)

if __name__ == "__main__":
    # demo.launch(server_name="0.0.0.0", server_port=7860)  # 所有端口都可以访问
    demo.launch(server_name="localhost", server_port=7860)  # 本地访问
    
3. 致谢

参考大佬的博客进行一些优化,原文链接如下:

解锁DeepSpeek-R1大模型微调:从训练到部署,打造定制化AI会话系统_speek人工智能-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值