AOR3 对偶理论

1 如何写出一个问题的对偶问题

1,对偶变量和原问题变量的对应性:

对于对原变量的每一个线性表达式,都对应一个对偶变量。

2.将该线性表达式的权值看成对偶变量yi,对于yi的约束为:

所有式子xj的系数按照权值yi相加,与原问题表达式xj系数比较。

注意: 以下都是假设原问题是max的条件,如果原问题是min,需要把x加上符号,因此x>0其实是x<0, x<0 其实是x>0

比较方法:

原问题条件对偶问题限制
x j ≥ 0 x_j\ge0 xj0 ∑ a i y i ≥ 0 \sum a_iy_i\ge0 aiyi0
x j ≤ 0 x_j\le0 xj0 ∑ a i y i ≤ 0 \sum a_iy_i\le0 aiyi0
x j x_j xj无限制 ∑ a i y i = 0 \sum a_iy_i=0 aiyi=0

总之就是和原问题相同。

对于对偶问题变量,和原问题的相反,具体如下:

原问题条件对偶问题限制
∑ a j x j ≥ 0 \sum a_jx_j\ge 0 ajxj0 y i ≤ 0 y_i\le 0 yi0
∑ a j x j ≤ 0 \sum a_jx_j\le 0 ajxj0 y i ≥ 0 y_i\ge 0 yi0
∑ a j x j \sum a_jx_j ajxj无限制 y i = 0 y_i= 0 yi=0

目标函数是常数系数乘以权值求和,
原来的max变为min,min变为max

例如: max ⁡ z = c x 1 \max z=cx_{1} maxz=cx1

a 1 x 1 + a 2 x 2 + a 3 x 3 ≤ b 1 a_{1}x_{1}+a_{2}x_{2}+a_{3}x_{3}\le b_1 a1x1+a2x2+a3x3b1
a 4 x 1 + a 5 x 2 + ≤ b 2 a_{4}x_{1}+a_{5}x_{2}+\le b_2 a4x1+a5x2+b2
x 1 , x 2 ≥ 0 x_{1},x_{2}\ge 0 x1,x20

首先每个式子设置权值y1,y2

原式权值
a 1 x 1 + a 2 x 2 + a 3 x 3 ≤ b 1 a_{1}x_{1}+a_{2}x_{2}+a_{3}x_{3}\le b_1 a1x1+a2x2+a3x3b1 y 1 y_1 y1
a 4 x 1 + a 5 x 2 ≤ b 2 a_{4}x_{1}+a_{5}x_{2}\le b_2 a4x1+a5x2b2 y 2 y_2 y2

然后计算x1产生的约束,两个式子中x1系数乘权值之和与目标函数中x1系数比较,由于x1大于0, 因此大于目标函数系数:

a 1 y 1 + a 4 y 2 ≥ c a_1y_1+a_4y_2\ge c a1y1+a4y2c

然后计算x2产生的限制:

a 2 y 1 + a 5 y 2 ≥ 0 a_2y_1+a_5y_2\ge 0 a2y1+a5y20

x3产生的限制:

a 3 y 1 = 0 a_3y_1=0 a3y1=0

计算对y的约束:由于两个式子都是小于号,因此 y 1 , y 2 ≥ 0 y_1,y_2\ge 0 y1,y20

目标函数为: min ⁡ z = y 1 b 1 + y 2 b 2 \min z=y_1b_1+y_2b_2 minz=y1b1+y2b2

2 关于强弱对偶的理解

一个问题有三种可能:

  • 目标函数有界(max有上界,min有下界)
  • 目标函数值无界(max无上界,min无下界)
  • 无可行解(约束本身有矛盾)

其中前两种都是有可行解的,但是只有第一种有最优解。第二种可行但是没有可行解。

弱对偶性

原问题目标函数值一定小于对偶问题目标函数值。

推论

根据原问题的三种情况:

原问题的解情况对偶问题解的情况
有最优解可行,且下界就是原问题最优解
目标函数无界无可行解
没有可行解无界或者无可行解

证明 c T x ≤ ( A T y ) T x ≤ y T A x ≤ y T b c^Tx\le(A^Ty)^Tx\le y^TAx\le y^Tb cTx(ATy)TxyTAxyTb

强对偶性

如果原问题和对偶问题都有可行解,则

1: 它们均有最优解,

2: 最优解目标函数值相等

证明

对于1,由弱对偶性推论可以得出

对于2,不妨设存在可行解为 x ^ , y ^ \hat x,\hat y x^,y^

则有:

c T x ^ = ( A T y ^ ) T x ^ = y ^ T b c^T\hat x=(A^T\hat y)^T\hat x=\hat y^Tb cTx^=(ATy^)Tx^=y^Tb

根据最优性可知,该可行解即是最优解,且目标函数值相等。(证明好像有点问题)

最优性

如果原问题和对偶问题都存在可行解,且目标函数值相等,则该可行解即最优解。

证明: 设该对可行解为 x ^ , y ^ \hat x,\hat y x^,y^

有: c T x ^ = b T y ^ c^T\hat x=b^T\hat y cTx^=bTy^

由弱对偶性可知, b T y ^ b^T\hat y bTy^是原问题目标函数上界,因此 b T y ^ b^T\hat y bTy^为原问题最优解的目标函数值。同理 c T x ^ c^T\hat x cTx^是对偶问题最优解的目标函数值。

问题

1.对偶问题的目标函数为什么是y的转置,而且是左乘b, 看起来很怪异。

目标函数最后是一个值(标量),因此转置以后值不变。

w = w T = ( y T b ) T = b T y w=w^T=(y^Tb)^T=b^Ty w=wT=(yTb)T=bTy,和原问题目标函数一致。

之所以写成这样,是为了和后面的定理匹配,如果写成 b T y b^Ty bTy完全可以。

2.如何记忆强弱对偶定理

原问题有最优解
根据弱对偶定理,可以推出 对偶问题可行
根据强对偶定理,可以推出对偶问题有最优解。

原问题可行,但是目标函数无界
根据弱对偶定理,可以推出对偶问题不可行。

原问题不可行,根据弱对偶定理,可以推出对偶问题无界或者不可行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值