二十六、 对偶问题(※※※)

原视频:https://www.bilibili.com/video/BV194411y7sA?p=26

 

                          max 对应 min , min \leftrightarrow min

 

(1) 原(对偶)问题中的  x_i(y_i) 是其 对偶(原)问题中,价值系数 对应行 广义拉格朗日乘子

                                \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{bmatrix} \begin{bmatrix} x_1\\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1\\ \vdots \\b_n \end{bmatrix}                                                                  \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} y_1\\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} c_1\\ \vdots \\c_m \end{bmatrix}

                                             (m \times n)\:\:\:\:\times \:\:\:\: (n \times 1) =m \times 1                                                                         (n \times m)\:\:\:\:\times \:\:\:\: (m \times 1) =n \times 1

 

                     \begin{bmatrix} y_1\cdot a_{11} &y_1\cdot a_{12} & \cdots &y_1\cdot a_{1n} \\ \vdots & \vdots & & \vdots \\ y_m\cdot a_{m1} & y_m\cdot a_{m2} & \cdots & y_m\cdot a_{mn} \\ \end{bmatrix} \begin{bmatrix} x_1\\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1\cdot b_1\\ \vdots \\y_m\cdot b_n \end{bmatrix}                                       \begin{bmatrix} x_1\cdot a_{11} & x_1\cdot a_{21} & \cdots & x_1\cdot a_{m1} \\ \vdots & \vdots & & \vdots \\ x_n\cdot a_{1n} & x_n\cdot a_{2n} & \cdots & x_n\cdot a_{nn} \end{bmatrix} \begin{bmatrix} y_1\\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1\cdot c_1\\ \vdots \\x_n\cdot c_n \end{bmatrix}

             作为生产商每一行代表,生产所有产品所需的某一种材料总和不超过(\leq)存货         作为购买者每一行代表,生产某一种产品 所需的所有原料成本要大于等于(\geq售价

                            a_{11}x_1+a_{12}x_2+\cdots +a_{1n}x_n\leq b_1   (x_i为对应产品生产量,共有n种产品 )     a_{11}y_1+a_{21}y_2+\cdots +a_{m1}y_n \leq c_1      (y_i为对应材料成本钱数,共有m种材料)   

 

(2)由拉格朗日乘数法 和 KKT定理可知,广义拉格朗日乘子是作用在约束方程上的,从而成为原问题与对偶问题相互转换的角度与对应关系


步骤:

(1)看目标函数(确认表的使用方向):

               若     原问题  min Z  ,  对偶问题   max W

               若     原问题  min W ,  对偶问题   max Z

(2)找对应关系(确定符号):(易错)

 

                                   

                      

                      

 

 

原问题

max Z=2x_1+3x_2-5x_3+x_4\\ s.t.\begin{Bmatrix} x_1+x_2-3x_3+x_4\geq5\\ 2x_1+2x_3-x_4\leq4\\ x_2+x_3+x_4=6\\ x_1\leq0;x_2,x_3\geq 0,x_4 \in R \end{matrix}

(1)描述方程

     maxZ=Cx\:\:\:\:\:\:\:\:\:\:C=(2\:\:3\:\:-5\:\:\:1\:)^T\\

                                                      x_1\:\:\:x_2\:\:\:x_3\:\:\:x_4

.\:\:\:\:\:\:Ax\:\:\:(\leq \geq =)\:\:\: b ;\:\:\:\:\:\:\:\:\:\:A= \begin{bmatrix} 1&1&-3&1\\ 2&0&2&-1\\ 0&1&1&1\\ \end{bmatrix}

对偶形式

          minW=b^Tx=5y_1+4y_2+6y_3\\

                                                          y_1\:\:\:y_2\:\:\:y_3\:\:\:

. \:\:\:\:\:\:\:\:\: s.t.A^Ty=C^T \:\:\:\:\:\:\:\:\:A^T=\begin{bmatrix} 1&2&0\\ 1&0&1\\ -3&2&1\\ 1&-1&1 \end{bmatrix}  \\x_1\\x_2\\x_3\\x_4\\                     C^T=\begin{bmatrix} 2\\3\\-5\\1 \end{bmatrix}

. \:\:\:\:\:\:\:\:\: s.t.\begin{Bmatrix} 1\cdot y_1+2\cdot y_2\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:?\:\:\:\:\:\:2\\ 1\cdot y_1+1\cdot y_3\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:?\:\:\:\:\:\:3\\ -3\cdot y_1+2\cdot y_2+1\cdot y_3\:\:\:\:\:?\:\:\:\:\:-5\\ 1\cdot y_1-1\cdot y_2+1\cdot y_3\:\:\:\:\:?\:\:\:\:\:\:1\\ \end{matrix}                    

  根据原问题   变量, 推理出 对偶问题  约束条件

   . \:\:\:\:\:\:\:\:\: s.t.\begin{Bmatrix} x_1\leq0 \Rightarrow g_1(y)\leq b_1\\ x_2\geq0 \Rightarrow g_2(y)\geq b_2\\ x_3\geq0 \Rightarrow g_3(y)\geq b_3\\ x_4 \in R \Rightarrow g_1(y)=b_4\\ \end{matrix} \:\:\:\:\:\:\:\:\: \Rightarrow \:\:\:\:\:\:\:\:\: s.t.\begin{Bmatrix} 1\cdot y_1+2\cdot y_2\leq2\\ 1\cdot y_1+1\cdot y_3\geq3\\ -3\cdot y_1+2\cdot y_2+1\cdot y_3\geq-5\\ 1\cdot y_1-1\cdot y_2+1\cdot y_3=1\\ \end{matrix}

 

  根据原问题  约束条件 , 推理出 对偶问题 变量

           s.t.\begin{Bmatrix} x_1+x_2-3x_3+x_4\geq5\\ 2x_1+2x_3-x_4\leq4\\ x_2+x_3+x_4=6\\ x_1\leq0;x_2,x_3\geq 0,x_4 \in R \end{matrix}

            s.t.\begin{Bmatrix} f_1(x)\geq5 \Rightarrow y_1\leq0\\ f_2(x)\leq4 \Rightarrow y_2\geq0\\ f_3(x)=6 \Rightarrow y_3\in R \\ \end{matrix}

整理:

minW=5y_1+4y_2+6y_3\\

s.t.\begin{Bmatrix} 1\cdot y_1+2\cdot y_2\leq2\\ 1\cdot y_1+1\cdot y_3\geq3\\ -3\cdot y_1+2\cdot y_2+1\cdot y_3\geq-5\\ 1\cdot y_1-1\cdot y_2+1\cdot y_3=1\\ y_1\leq0\\ y_2\geq0\\ y_3\in R \end{matrix}


                                             


(1)弱对偶性

若 \bar x 是原问题的可行解,\bar Y 是对偶问题的可行解,则存在   C\bar x \leq \bar Yb

             

         

               

 


(2)无界性

    若原问题(对偶问题)为无界解,则其对偶(原)问题无可行解

                原问题                        对偶问题

                  无界            \Rightarrow            无可行解

                  无界            \nLeftarrow            无可行解


(3)可行解和最优解的性质

   设\hat x 是原问题的可行解,\hat Y 是对偶(原)问题的可行解

    当 C\hat x= \hat Y b  时,\hat x ,\hat Y都是最优解


(4)对偶定理

      若原问题有最优解,那么对偶问题也有最优解,且目标函数值相同 


(5)互补松弛原理

       若  \hat x ,\hat Y  分别是原问题和对偶问题的可行解

       那么,\hat Y x_s=0,Y_s\hat x=0    \Leftrightarrow    \hat x ,\hat Y最优解


(6)

原问题x_B(基变量)x_N(非基变量)x_S(松弛变量)
检验数C_i-C_BB^-1P_i=0C_i-C_BB^-1P_i-C_BB^{-1}
对偶问题   -Y(单纯性表终表计算的Y)

 

 

 

 

 

 

对偶问题的最优解,就是原问题松弛变量检测数负值

 

 

 

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值