你身边有没有降维打击的例子?

前些天刷朋友圈,看到某广告公司的朋友凌晨两点发动态:"给甲方改了27版海报,最后他选了第一版。"配图是办公桌上堆成小山的咖啡杯,评论区清一色"设计狗真实写照"的调侃。

这种场景在两年前的设计行业司空见惯,直到我亲眼见证了AI绘图工具如何将这种工作模式降维打击的。

img

一个设计朋友找我聊天,三杯下肚就开始倒苦水:隔壁初创公司就两个实习生,用Stable Diffusion三天出了200张场景图,转化率比我们高30%。

他掏出手机给我看对比图,传统团队设计的3D建模场景精致但呆板,AI生成的自然主题海报里,青翠欲滴树叶映衬射出纯净的质感,这种充满叙事张力的画面,人类设计师至少要迭代好几版才能接近。

img

这种冲击不仅发生在视觉领域。

某MCN机构的创作者大会,负责人展示了两个账号的数据:传统编导团队运营的美妆号,6人小组月产12条视频,平均播放80万;AI辅助运营的同类型账号,2人月更45条视频,平均播放240万。关键在于GPT-4o的脚本生成器能实时抓取5000条热门评论,自动拆解出"早八伪素颜"这类精准标签,再结合DALL-E3生成分镜脚本。

他们给我看了一段后台记录:运营输入"七夕男友礼物攻略",AI在17秒内输出了8版脚本结构,包括"直男开箱震惊现场"、"理工男实验室测评"等反直觉角度,这种信息处理速度彻底重构了内容生产的成本结构。

与此同时,“张雪峰们”可能要下岗了

Deepseek 的 做高考规划,只需要几秒钟,就能给出最优的高考志愿方案,不少学生亲测后却惊呼:“太精准了,比人工还靠谱!”

张雪峰本人都说了,他现在只能提供“情绪价值”

img

这些案例背后藏着残酷的真相:

无疑AI抢饭碗已势在必行,特别是这次deepseek的崛起,震醒了一大波人。

毫不夸张地讲,未来两年善用AI就是普通人“降维打击”的利器,注意我说的是“擅用”,需要彻底搞清主流AI(包括deepseek)的所有高端玩法,尽早培养AI思维,让AI真正为你提效而不是简单的搜索+聊天工具!!

有关AI工具的资料网上有很多,但信息准确度和实效性参差不齐,建议直接学习知乎知学堂的官方课程,能让你省去很多弯路。

我把官方的入口放下面了,可以直接预约学习:

知乎|知学堂 「AI 应用实战营」

¥0.10立即参加

以下是听课注意事项:

1.了解AI当前趋势,选择一个最适合自己的AI工具并精学;

2.知道提示词训练的底层逻辑,精准输出;

3.找官方工作人员领取学习资料

(里面包括小白入门手册、主流AI工具安装包、提示词合集、商业项目渠道)

建议边学边练,抓住机会让老师答疑解惑。

未来掌握AI的人,就意味着更多的机会。

就像当初懂互联网的人,可以把线下的生意全部搬到网上再做一遍,而不懂互联网的人只能看着。

这一次,千万不要再让自己成为那个旁观者了!

但真正可怕的不是AI替代人力,而是它改变了竞争维度。

就像马车夫面对汽车时,最大的威胁不是发动机比马匹更强壮,而是整个交通规则和基础设施都将重塑。

那些用SD+PS组合拳的设计师,本质上是在新维度里构建了"超频迭代"的能力——传统团队改一版海报的时间,够他们跑通20次图生图循环并交叉验证数据反馈。

这种时间密度的差异,比单纯的质量差距更具毁灭性。

看着朋友圈里那些凌晨改稿的设计师,我突然想起《三体》里二向箔降临时的话:“毁灭你,与你有何相干?”

当AI的打击维度从替代重复劳动升级到解构经验体系,很多行业的崩溃可能不会出现悲壮的抵抗,而是像晨雾遇见阳光般无声消散。

有何相干?"

当AI的打击维度从替代重复劳动升级到解构经验体系,很多行业的崩溃可能不会出现悲壮的抵抗,而是像晨雾遇见阳光般无声消散。

拥抱SD这类工具不是选择题,而是幸存者必须完成的维度跃迁

一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

在这里插入图片描述

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

相信大家在刚刚开始学习的过程中总会有写摸不着方向,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程等免费分享出来。

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。

二方面是可以根据这些资料规划好学习计划和方向。

😝有需要的小伙伴,可以微信扫码领取!

在这里插入图片描述

大模型星球

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先有一个明确的学习路线方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(完整路线在公众号内领取)

在这里插入图片描述

大模型学习路线

👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,需要的扫描下方二维码领取 **

在这里插入图片描述

### PCA原理 主成分分析(Principal Component Analysis, PCA)是一种常用的无监督学习方法,用于数据的处理。它的核心思想是通过线性变换将高度的数据映射到低度空间,在尽可能减少信息损失的情况下低数据复杂度。 #### 数据中心化 在PCA过程中,第一步是对原始数据进行中心化操作,即将每列数据减去其均值[^1]。这样做的目的是使数据分布围绕原点展开,便于后续计算协方差矩阵。 #### 协方差矩阵与特征分解 接着,构建数据集的协方差矩阵,并对其进行特征值分解。协方差矩阵反映了变量之间的关系强度和方向。通过对协方差矩阵求解特征值和特征向量,可以获得数据的主要变化方向[^2]。 #### 主成分的选择 根据特征值大小排序,选取前k个最大的特征值对应的特征向量作为新的坐标轴。这些新坐标轴即为主成分,能够最大程度地保留原始数据的信息。通常情况下,会选择使得累计贡献率达到一定阈值(如95%)的主成分数量[^3]。 #### 投影转换 最后一步是将原始数据投影到选定的主成分上完成。具体而言,利用前面得到的特征向量构成变换矩阵T,然后让标准化后的样本乘以此矩阵即可获得后的结果[^4]。 ### Python实现PCA的应用实例 以下是基于Python使用`scikit-learn`库执行PCA的一个简单例子: ```python from sklearn.decomposition import PCA import numpy as np # 创建一个简单的二数组模拟数据集 data = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) # 初始化PCA模型,指定要到的目标度为1 pca = PCA(n_components=1) # 对数据进行拟合并立即转化 reduced_data = pca.fit_transform(data) print("Original data:\n", data) print("\nReduced data:\n", reduced_data) ``` 上述代码展示了如何加载必要的模块、准备测试数据以及设置参数并通过调用`fit_transform()`函数一次性完成训练与两个阶段的操作[^5]。 ### 参数解释 - `n_components`: 表示目标度数目。 - `copy`: 如果设为True,则会在副本上进行所有修改,默认行为是为了保护输入数据不受影响。 - `whiten`: 是否启用白化选项,此功能可以使各主成分具有单位标准差,有助于某些特定场景下的进一步分析或建模工作。 --- 问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值