[亲测可行]Ubuntu 16.04下安裝Cuda 8.0 和 Cudnn 6.0

1.检查NVIDIA 显卡

nvidia-smi

若出现下图,则说明NVIDIA 显卡已经安装

若出现command no found则需要先安装NVIDIA 显卡,先到NVDIA官网查看对应的驱动程序的版本:

 sudo add-apt-repository ppa:graphics-drivers/ppa  
 sudo apt-get update  
 sudo apt-get install nvidia-390 #此处要根据上面查询到的版本适当更改
 sudo apt-get install mesa-common-dev  
 sudo apt-get install freeglut3-dev

重启之后在终端内输入:nvidia-smi

2.安装CUDA8.0
NVIDIA官网下载相应的CUDA版本的run 文件,
这里写图片描述

sudo chmod a+x cuda_8.0.61_375.26_linux.run
sudo ./cuda_8.0.61_375.26_linux.run

在询问是否安装NVIDIA驱动的时候选择no, 其它都默认。

vim ~/.bashrc (修改环境变量)
export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

3.安装Cudnn 6.0
登录 NVIDIA 账号下载Cudnn 版本

拷贝相关文件

cd cuda/include  ()
sudo cp cudnn.h /usr/local/cuda-8.0/include/
cd ../lib64
sudo cp libcudnn.so /usr/local/cuda-8.0/lib64/

创建软链接库

cd /usr/local/cuda-8.0/lib64
sudo chmod +r libcudnn.so.6.0.21
sudo ln -sf libcudnn.so.6.0.21 libcudnn.so.6
sudo ln -sf libcudnn.so.6 libcudnn.so
sudo ldconfig

4.测试 gpu 使用
工具: tensorflow python3
代码如下

import tensorflow as tf
import numpy as np
x_data = np.float32(np.random.rand(2, 100))
y_data = np.dot([0.100, 0.200], x_data) + 0.300

b = tf.Variable(tf.zeros([1]))
W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))
y = tf.matmul(W, x_data) + b               

loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

init = tf.initialize_all_variables()

sess = tf.Session()
sess.run(init)              

for step in range(0, 10000):
    sess.run(train)
    if step % 20 == 0:
        print (step, sess.run(W), sess.run(b))

若安装成功,则会显示显卡信息,查下nvidia-smi, 如下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值