1.检查NVIDIA 显卡
nvidia-smi
若出现下图,则说明NVIDIA 显卡已经安装
若出现command no found
则需要先安装NVIDIA 显卡,先到NVDIA官网查看对应的驱动程序的版本:
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update
sudo apt-get install nvidia-390 #此处要根据上面查询到的版本适当更改
sudo apt-get install mesa-common-dev
sudo apt-get install freeglut3-dev
重启之后在终端内输入:nvidia-smi
2.安装CUDA8.0
到NVIDIA官网下载相应的CUDA版本的run
文件,
sudo chmod a+x cuda_8.0.61_375.26_linux.run
sudo ./cuda_8.0.61_375.26_linux.run
在询问是否安装NVIDIA驱动的时候选择no
, 其它都默认。
vim ~/.bashrc (修改环境变量)
export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
3.安装Cudnn 6.0
登录 NVIDIA 账号下载Cudnn
版本
拷贝相关文件
cd cuda/include ()
sudo cp cudnn.h /usr/local/cuda-8.0/include/
cd ../lib64
sudo cp libcudnn.so /usr/local/cuda-8.0/lib64/
创建软链接库
cd /usr/local/cuda-8.0/lib64
sudo chmod +r libcudnn.so.6.0.21
sudo ln -sf libcudnn.so.6.0.21 libcudnn.so.6
sudo ln -sf libcudnn.so.6 libcudnn.so
sudo ldconfig
4.测试 gpu 使用
工具: tensorflow python3
代码如下
import tensorflow as tf
import numpy as np
x_data = np.float32(np.random.rand(2, 100))
y_data = np.dot([0.100, 0.200], x_data) + 0.300
b = tf.Variable(tf.zeros([1]))
W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))
y = tf.matmul(W, x_data) + b
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for step in range(0, 10000):
sess.run(train)
if step % 20 == 0:
print (step, sess.run(W), sess.run(b))
若安装成功,则会显示显卡信息,查下nvidia-smi
, 如下