强大数定理,弱大数定理,和中心极限定理

UTF8gbsn

Intro

  • Weak ∀ ϵ > 0 , lim ⁡ n → ∞ P ( ∣ X ‾ − μ ∣ ≤ ϵ ) = 1 \forall \epsilon>0, \lim _{n \rightarrow \infty} P\left(\left|\overline{X}-\mu\right| \leq \epsilon\right)=1 ϵ>0,nlimP(Xμϵ)=1

    • 注意弱大数定理,收敛的对象是概率 p → 0 p \rightarrow 0 p0

    • 解释起来是当 n > N n>N n>N时。

      ∣ p − 1 ∣ &lt; ϵ p |p-1|&lt;\epsilon_{p} p1<ϵp

      由于 P = P r ( ∣ X ‾ − μ ∣ &gt; ϵ ) P=Pr(|\overline{X}-\mu|&gt;\epsilon) P=Pr(Xμ>ϵ),可以得出自变量 X ‾ \overline{X} X μ \mu μ的差有时候会大于 ϵ \epsilon ϵ,只是概率非常小。而是时有发生。

  • Strong ∀ ϵ &gt; 0 , P ( lim ⁡ n → ∞ ∣ X ‾ − μ ∣ ≤ ϵ ) = 1 \forall \epsilon&gt;0, P\left(\lim _{n \rightarrow \infty}\left|\overline{X}-\mu\right| \leq \epsilon\right)=1 ϵ>0,P(nlimXμϵ)=1

    • 强大数定理,收敛的是 X ‾ → μ \overline{X} \rightarrow \mu Xμ

    • 解释起来就是当 n &gt; N n&gt;N n>N时有 X ‾ − μ ⩽ ϵ \overline{X}-\mu \leqslant \epsilon Xμϵ

      的概率为1

  • 中心极限定理(独立同分布)

    lim ⁡ n → ∞ F n ( x ) = lim ⁡ n → ∞ { ∑ i = 1 n X i − n μ n σ ≤ x } = 1 2 π ∫ − ∞ x e − t 2 2 d t \lim _{n \rightarrow \infty} F_{n}(x)=\lim _{n \rightarrow \infty}\left\{\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n} \sigma} \leq x\right\}=\frac{1}{\sqrt{2} \pi} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} d t nlimFn(x)=nlim{n σi=1nXinμx}=2 π1xe2t2dt

example

弱大数定理

满足弱大数定理,不满足强大数定理的例子没有想到。但是可以展示下按概率收敛的是什么个意思。假如我们有一个数列为

1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 1,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1 1,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1

每两个1之间含有 2 n 2^n 2n个0那么实际上我们可以说,这个数列按概率收敛于 0 0 0,但是不是处处收敛于 0 0 0。因为 n n n无论多大,都会有元素 1 1 1出现在数列上。

在这里插入图片描述

强大数定理

丢骰子的游戏可以用来列举一下强大数定理。首先色子有6个结果 1 , 2 , 3 , 4 , 5 , 6 1,2,3,4,5,6 1,2,3,4,5,6,并且是等概率的。那么它的期望就是.
E = 1 + 2 + 3 + 4 + 5 + 6 6 = 3.5 E=\frac{1+2+3+4+5+6}{6}=3.5 E=61+2+3+4+5+6=3.5

  • 我们总共生成了1000个均值。每次的采样点数量按照下面的数列推进。
    100 , 200 , 300 , . . . , 1000 ∗ 100 100,200,300,...,1000*100 100,200,300,...,1000100

  • 最终我们把图像展示出来。后面所有的均值都夹在 ( 3.48 ∼ 3.52 ) (3.48\sim 3.52) (3.483.52)之间。

    在这里插入图片描述

中心极限定理

我们来举一个例子。我们的试验采用的随机变量服从 X ∼ N ( 1 , 3 ) X\sim N(1, 3) XN(1,3),也就是
D i s = 1 3 2 π e x p ( − ( x − 1 ) 2 2 ⋅ 3 2 ) Dis=\frac{1}{3\sqrt{2\pi}}exp(-\frac{(x-1)^2}{2\cdot 3^2}) Dis=32π 1exp(232(x1)2)

μ = 1 , σ = 3 \mu=1,\sigma=3 μ=1,σ=3

  • 操作一:

    R a n d o m ( D i s ) Random(Dis) Random(Dis) 1000 次 并计算
    ρ = ∑ i = 1 n X i − n μ n σ \rho=\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n} \sigma} ρ=n σi=1nXinμ

  • 重复操作一 10000
    次。我们可以得到10000个 ρ \rho ρ.把这10000个数据和标准正态分布画在同一个图中可得。

    在这里插入图片描述

可见着10000个数据服从标准正态分布。也就是中心极限定理描述的事情。如果换不同的Dis你会得到同样的上图。

  • 4
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值