控制系统状态空间表达式的解(3)——求解线性定常系统零状态响应

零状态响应计算

给定初始状态为的线性定常系统:
x ˙ = A x + B u , x ( 0 ) = 0 , t ≥ 0 \dot x=Ax+Bu,x(0)=0,t\ge0 x˙=Ax+Bux(0)=0t0
其中, x x x n n n维状态向量, u u u r r r维输入向量, A A A B B B分别为 n × n\times n×n和 n × r n\times r n×r的常阵,那么系统的零状态响应可以表示为:
x 0 x ( t ) = ∫ 0 t e A ( t − τ ) B u ( τ ) d τ t ≥ 0 x_{0x}(t)=\int_{0}^{t}e^{A(t-\tau)}Bu(\tau)d\tau\quad t\ge0 x0x(t)=0teA(tτ)Bu(τ)dτt0

(累了累了,休息一会儿…)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值