现代控制工程(三)状态方程的解

本文介绍了控制工程中非齐次状态方程的解,包括直接法和拉氏变换法。阐述了线性时变系统的运动分析,详细讲解了状态转移矩阵的概念及计算,提供了具体的例题来辅助理解。
摘要由CSDN通过智能技术生成

非齐次状态方程的解——控制工程的受控运动

当线性定常系统
{ x ˙ = A x + B u y = C x + D u , x ( t 0 ) = x ( 0 ) \left\{\begin{matrix} \dot x=Ax+Bu\\ y=Cx+Du \end{matrix}\right. ,x(t_0)=x(0) { x˙=Ax+Buy=Cx+Du,x(t0)=x(0)的外加输入函数 u ( t ) ≠ 0 u(t)\neq 0 u(t)̸=0时, u ( t ) u(t) u(t)作用下的运动称为可控系统的受控运动。此时状态方程为非齐次矩阵微分方程,即
x ˙ = A x + B u , x ( t ) ∣ t = t 0 = x ( t 0 ) , B ≠ 0 \dot x=Ax+Bu,x(t)|_{t=t_0}=x(t_0),B\neq 0 x˙=Ax+Bu,x(t)t=t0=x(t0),B̸=0
式中,x为n维状态向量,u为r维输入向量,A为n*n常系数矩阵,B为n*r常系数矩阵。
求解非齐次状态方程的方法和求解齐次状态方程的方法一致,即 直接法拉氏变换法

直接法

直接法就是按照常数方程求解微分方程的办法来。
改写方程形式为:
x ˙ − A x = B u \dot x-Ax=Bu x˙Ax=Bu
上式两边同时左乘 e − A t e^{-At} eAt得:
e − A t [ x ˙ − A x ] = e − A t B u e^{-At}[\dot x-Ax]=e^{-At}Bu eAt[x˙Ax]=eAtBu

d d t [ e − A t x ] = e − A t B u \frac {\mathrm{d}} {\mathrm{d}t} [e^{-At}x]=e^{-At}Bu dtd[eAtx]=eAtBu
对两边的式子进行积分,
∫ t 0 t d d τ [ e − A τ x ( τ ) ] d τ = ∫ t 0 t e − A τ B u ( τ ) d τ \int_{t_0}^{t}\frac {\mathrm{d}} {\mathrm{d}\tau} [e^{-A\tau}x(\tau)] \mathrm{d}\tau=\int_{t_0}^{t} e^{-A\tau}Bu(\tau) \mathrm{d}\tau t0tdτd[eAτx(τ)]dτ=t0teAτBu(τ)dτ
可得: e − A t x ( t ) − e − A t 0 x ( t 0 ) = ∫ t 0 t e − A τ B u ( τ ) d τ e^{-At}x(t)-e^{-At_0}x(t_0)=\int_{t_0}^{t} e^{-A\tau}Bu(\tau) \mathrm{d}\tau eAtx(t)eAt0x(t0)=t0teAτBu(τ)dτ
所以: x ( t ) = e A ( t − t 0 ) x ( t 0 ) + ∫ t 0 t e A ( t − τ ) B u ( τ ) d τ x(t)=e^{A(t-t_0)}x(t_0)+\int_{t_0}^{t} e^{A(t-\tau)}Bu(\tau) \mathrm{d}\tau x(t)=eA

  • 4
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值