[VINS-Mono]IMU预积分之PVQ 增量的误差、 协方差及 Jacobian(离散形式)

PVQ 增量的误差、 协方差及 Jacobian

5.离散形式

PVQ 增量误差在离散形式下的矩阵形式:
[ δ α k + 1 δ θ k − 1 δ β k + 1 δ b a k + 1 δ b w k + 1 ] = [ I f 12 δ t f 14 f 15 0 f 22 0 0 − δ t 0 f 32 I f 34 f 35 0 0 0 I 0 0 0 0 0 I ] [ δ α k δ θ k δ β k δ b a k δ b w k ] + [ g 11 g 12 g 13 g 14 0 0 0 − 1 2 δ t 0 − 1 2 δ t 0 0 − 1 2 R k δ t g 32 − 1 2 R k δ t g 34 0 0 0 0 0 0 δ t 0 0 0 0 0 0 δ t ] [ n a k n w k n a k + 1 n w k + 1 n b n n b w ] = F [ δ α k δ θ k δ β k δ b a k δ b w k ] + G [ n a k n w k n a k + 1 n w k + 1 n b a n b w ] \begin{array}{l} {\left[\begin{array}{c} \delta \alpha_{k+1} \\ \delta \theta_{k-1} \\ \delta \beta_{k+1} \\ \delta b_{a_{k+1}} \\ \delta b_{w_{k+1}} \end{array}\right]=\left[\begin{array}{ccccc} \mathbf{I} & f_{12} & \delta t & f_{14} & f_{15} \\ 0 & f_{22} & 0 & 0 & -\delta t \\ 0 & f_{32} & \mathbf{I} & f_{34} & f_{35} \\ 0 & 0 & 0 & \mathbf{I} & 0 \\ 0 & 0 & 0 & 0 & \mathbf{I} \end{array}\right]\left[\begin{array}{c} \delta \alpha_{k} \\ \delta \theta_{k} \\ \delta \beta_{k} \\ \delta b_{a_{k}} \\ \delta b_{w_{k}} \end{array}\right]+\left[\begin{array}{cccccc} g_{11} & g_{12} & g_{13} & g_{14} & 0 & 0 \\ 0 & -\frac{1}{2} \delta t & 0 & -\frac{1}{2} \delta t & 0 & 0 \\ -\frac{1}{2} \mathbf{R}_{k} \delta t & g_{32} & -\frac{1}{2} \mathbf{R}_{k} \delta t & g_{34} & 0 & 0 \\ 0 & 0 & 0 & 0 & \delta t & 0 \\ 0 & 0 & 0 & 0 & 0 & \delta t \end{array}\right]\left[\begin{array}{c} \mathbf{n}_{a_{k}} \\ \mathbf{n}_{w_{k}} \\ \mathbf{n}_{a_{k+1}} \\ \mathbf{n}_{w_{k+1}} \\ \mathbf{n}_{b_{n}} \\ \mathbf{n}_{b_{w}} \end{array}\right]} \\ =\mathbf{F}\left[\begin{array}{c} \delta \alpha_{k} \\ \delta \theta_{k} \\ \delta \beta_{k} \\ \delta b_{a_{k}} \\ \delta b_{w_{k}} \end{array}\right]+\mathbf{G}\left[\begin{array}{c} \mathbf{n}_{a_{k}} \\ \mathbf{n}_{w_{k}} \\ \mathbf{n}_{a_{k+1}} \\ \mathbf{n}_{w_{k+1}} \\ \mathbf{n}_{b_{a}} \\ \mathbf{n}_{b_{w}} \end{array}\right] \\ \end{array} δαk+1δθk1δβk+1δbak+1δbwk+1 = I0000f12f22f3200δt0I00f140f34I0f15δtf350I δαkδθkδβkδbakδbwk + g11021Rkδt00g1221δtg3200g13021Rkδt00g1421δtg3400000δt00000δt naknwknak+1nwk+1nbnnbw =F δαkδθkδβkδbakδbwk +G naknwknak+1nwk+1nbanbw
对于 δ θ k + 1 \delta \theta_{k+1} δθk+1,由连续形式得到:
δ θ ˙ ≈ − ( ω ^ t − b w t ) ∧ δ θ − n w − δ b w t \begin{array}{c} \dot{\delta \theta} & \approx & -\left ( \hat{\omega}_t-b_{w_t} \right ) ^{\wedge }\delta \theta-n_w-\delta b_{w_t} \end{array} δθ˙(ω^tbwt)δθnwδbwt
则中值积分的离散形式为:
δ θ ˙ k ≈ − ( w ^ k + w ^ k + 1 2 − b w k ) ∧ δ θ k − n w k + n w k − 1 2 − δ b w k \delta \dot{\theta}_{k} \approx-\left(\frac{\hat{w}_{k}+\hat{w}_{k+1}}{2}-b_{w_{k}}\right)^{\wedge} \delta \theta_{k}-\frac{n_{w_{k}}+n_{w_{k-1}}}{2}-\delta b_{w_{k}} δθ˙k(2w^k+w^k+1bwk)δθk2nwk+nwk1δbwk
由导数的定义:
δ θ k + 1 = δ θ k + δ θ ˙ k δ t = f 22 δ θ k − δ t δ b w k − δ t 2 n w k − δ t 2 n w k + 1 \begin{align} \delta \theta_{k+1} & = \delta \theta_{k}+\delta\dot{\theta}_{k}\delta t \\ & = f_{22}\delta \theta_{k}-\delta t\delta b_{w_{k}}-\frac{\delta t}{2}n_{w_{k}} -\frac{\delta t}{2} n_{w_{k+1}} \end{align} δθk+1=δθk+δθ˙kδt=f22δθkδtδbwk2δtnwk2δtnwk+1
其中:
f 22 = I − ( w ^ k + w ^ k + 1 2 − b w k ) ∧ δ t f_{22}=I-\left(\frac{\hat{w}_{k}+\hat{w}_{k+1}}{2}-b_{w_{k}}\right)^{\wedge }\delta t f22=I(2w^k+w^k+1bwk)δt
对于 δ β k + 1 \delta \beta_{k+1} δβk+1,由连续形式得到:
δ β ˙ t b k = β ˙ ^ t b k − β ˙ t b k = − R t b k [ a ^ t − b a t ] × δ θ − R t b k δ b a t − R t b k n a \begin{align} \delta \dot{\beta}_{\mathrm{t}}^{\mathrm{b}_{\mathrm{k}}} & = \hat{\dot{\beta}}_{\mathrm{t}}^{\mathrm{b}_{\mathrm{k}}}-\dot{\beta}_{\mathrm{t}}^{\mathrm{b}_{\mathrm{k}}}\\ & = -\mathrm{R}_{\mathrm{t}}^{\mathrm{b}_{\mathrm{k}}}\left[\hat{\mathrm{a}}_{\mathrm{t}}-\mathrm{b}_{\mathrm{at}}\right]_{\times} \delta \theta-\mathrm{R}_{\mathrm{t}}^{\mathrm{b}_{\mathrm{k}}} \delta \mathrm{b}_{\mathrm{at}}-\mathrm{R}_{\mathrm{t}}^{\mathrm{b}_{\mathrm{k}}} \mathrm{n}_{\mathrm{a}} \end{align} δβ˙tbk=β˙^tbkβ˙tbk=Rtbk[a^tbat]×δθRtbkδbatRtbkna
则离散形式为:
δ β ˙ t b k = − R k b k ( a ^ k − b a k ) ∧ δ θ k + R k + 1 b k ( a ^ k + 1 − b a k ) ∧ δ θ k + 1 2 − R k b k + R k + 1 b k 2 δ b a k − R k b k n a k + R k + 1 b k n a k + 1 2 \delta \dot{\beta}_{t}^{b_{k}}=-\frac{\mathbf{R}_{k}^{b_{k}}\left(\hat{a}_{k}-b_{a_{k}}\right) ^\wedge \delta \theta_{k}+\mathbf{R}_{k+1}^{b_{k}}\left(\hat{a}_{k+1}-b_{a_{k}}\right)^{\wedge} \delta \theta_{k+1}}{2}-\frac{\mathbf{R}_{k}^{b_{k}}+\mathbf{R}_{k+1}^{b_{k}}}{2} \delta b_{a_{k}}-\frac{\mathbf{R}_{k}^{b_{k}} n_{a_{k}}+\mathbf{R}_{k+1}^{b_{k}} n_{a_{k+1}}}{2} δβ˙tbk=2Rkbk(a^kbak)δθk+Rk+1bk(a^k+1bak)δθk+12Rkbk+Rk+1bkδbak2Rkbknak+Rk+1bknak+1
δ θ k + 1 \delta \theta_{k+1} δθk+1带入:
δ β ˙ t b k = − 1 2 R k b k ( a ^ k − b a k ) ∧ δ θ k − 1 2 R k + 1 b k ( a ^ k + 1 − b a k ) ∧ { [ I − ( w ^ k + w ^ k + 1 2 − b w k ) ∧ δ t ] δ θ k − n w k + n w k + 1 2 δ t − δ b w k δ t } − 1 2 ( R k b k + R k + 1 b k ) δ b a k − 1 2 R k b k n a k − 1 2 R k + 1 b k n a k + 1 = { − 1 2 R k b k ( a ^ k − b a k ) ∧ − 1 2 R k + 1 b k ( a ^ k + 1 − b a k ) ∧ [ I − ( w ^ k + w ^ k + 1 2 − b w k ) δ t ] } δ θ k + δ t 4 R k + 1 b k ( a ^ k + 1 − b a k ) n w k + δ t 4 R k + 1 b k ( a ^ k + 1 − b a k ) ∧ n w k − 1 + δ t 2 R k + 1 b k ( a ^ k + 1 − b a k ) ∧ δ b w k − 1 2 ( R k b k + R k + 1 b k ) δ b a k − 1 2 R k b k n a k − 1 2 R k + 1 b k n a k + 1 \begin{aligned} \delta \dot{\beta}_{t}^{b_{k}}= & -\frac{1}{2} \mathbf{R}_{k}^{b_{k}}\left(\hat{a}_{k}-b_{a_{k}}\right)^{\wedge} \delta \theta_{k} \\ & -\frac{1}{2} \mathbf{R}_{k+1}^{b_{k}}\left(\hat{a}_{k+1}-b_{a_{k}}\right)^{\wedge}\left\{\left[I-\left(\frac{\hat{w}_{k}+\hat{w}_{k+1}}{2}-b_{w_{k}}\right)^{\wedge} \delta t\right] \delta \theta_{k}-\frac{n_{w_{k}}+n_{w_{k+1}}}{2} \delta t-\delta b_{w_{k}} \delta t\right\} \\ & -\frac{1}{2}\left(\mathbf{R}_{k}^{b_{k}}+\mathbf{R}_{k+1}^{b_{k}}\right) \delta b_{a_{k}}-\frac{1}{2} \mathbf{R}_{k}^{b_{k}} n_{a_{k}}-\frac{1}{2} \mathbf{R}_{k+1}^{b_{k}} n_{a_{k+1}} \\ = & \left\{-\frac{1}{2} \mathbf{R}_{k}^{b_{k}}\left(\hat{a}_{k}-b_{a_{k}}\right)^{\wedge}-\frac{1}{2} \mathbf{R}_{k+1}^{b_{k}}\left(\hat{a}_{k+1}-b_{a_{k}}\right)^{\wedge}\left[I-\left(\frac{\hat{w}_{k}+\hat{w}_{k+1}}{2}-b_{w_{k}}\right) \delta t\right]\right\} \delta \theta_{k} \\ & +\frac{\delta t}{4} \mathbf{R}_{k+1}^{b_{k}}\left(\hat{a}_{k+1}-b_{a_{k}}\right) n_{w_{k}}+\frac{\delta t}{4} \mathbf{R}_{k+1}^{b_{k}}\left(\hat{a}_{k+1}-b_{a_{k}}\right)^{\wedge} n_{w_{k-1}}+\frac{\delta t}{2} \mathbf{R}_{k+1}^{b_{k}}\left(\hat{a}_{k+1}-b_{a_{k}}\right)^{\wedge} \delta b_{w_{k}} \\ & -\frac{1}{2}\left(\mathbf{R}_{k}^{b_{k}}+\mathbf{R}_{k+1}^{b_{k}}\right) \delta b_{a_{k}}-\frac{1}{2} \mathbf{R}_{k}^{b_{k}} n_{a_{k}}-\frac{1}{2} \mathbf{R}_{k+1}^{b_{k}} n_{a_{k+1}} \end{aligned} δβ˙tbk==21Rkbk(a^kbak)δθk21Rk+1bk(a^k+1bak){[I(2w^k+w^k+1bwk)δt]δθk2nwk+nwk+1δtδbwkδt}21(Rkbk+Rk+1bk)δbak21Rkbknak21Rk+1bknak+1{21Rkbk(a^kbak)21Rk+1bk(a^k+1bak)[I(2w^k+w^k+1bwk)δt]}δθk+4δtRk+1bk(a^k+1bak)nwk+4δtRk+1bk(a^k+1bak)nwk1+2δtRk+1bk(a^k+1bak)δbwk21(Rkbk+Rk+1bk)δbak21Rkbknak21Rk+1bknak+1
由导数的定义可知:
δ β k + 1 b k = δ β k b k + δ β ˙ t b k δ t = f 32 δ θ k + δ β k b k − 1 2 ( R k b k + R k + 1 b k ) δ t δ b a k + f 35 δ b w k − 1 2 R k b k δ t n a k + g 32 n w k − 1 2 R k + 1 b k δ t n a k + 1 + g 34 n w k − 1 \begin{array}{l} \delta \beta_{k+1}^{b_{k}}=\delta \beta_{k}^{b_{k}}+\delta \dot{\beta}_{t}^{b_{k}} \delta t \\ = f_{32} \delta \theta_{k}+\delta \beta_{k}^{b_{k}}-\frac{1}{2}\left(\mathbf{R}_{k}^{b_{k}}+\mathbf{R}_{k+1}^{b_{k}}\right) \delta t \delta b_{a_{k}}+f_{35} \delta b_{w_{k}} \\ -\frac{1}{2} \mathbf{R}_{k}^{b_{k}} \delta t n_{a_{k}}+g_{32} n_{w_{k}}-\frac{1}{2} \mathbf{R}_{k+1}^{b_{k}} \delta t n_{a_{k+1}}+g_{34} n_{w_{k-1}} \end{array} δβk+1bk=δβkbk+δβ˙tbkδt=f32δθk+δβkbk21(Rkbk+Rk+1bk)δtδbak+f35δbwk21Rkbkδtnak+g32nwk21Rk+1bkδtnak+1+g34nwk1
其中:
f 32 = − 1 2 R k b k ( a ^ k − b a k ) ∧ δ t − 1 2 R k + 1 b k ( a ^ k + 1 − b a k ) ∧ [ I − ( w ^ k + w ^ k + 1 2 − b w k ) ∧ δ t ] δ t f 34 = − 1 2 ( R k b k + R k + 1 b k ) δ t f 35 = 1 2 R k + 1 b k ( a ^ k + 1 − b a k ) ∧ δ t 2 g 32 = 1 4 R k + 1 b k ( a ^ k + 1 − b a k ) ∧ δ t 2 g 34 = 1 4 R k + 1 b k ( a ^ k + 1 − b a k ) ∧ δ t 2 \begin{aligned} f_{32} & =-\frac{1}{2} \mathbf{R}_{k}^{b_{k}}\left(\hat{a}_{k}-b_{a_{k}}\right) ^{\wedge}\delta t-\frac{1}{2} \mathbf{R}_{k+1}^{b_{k}}\left(\hat{a}_{k+1}-b_{a_{k}}\right)^{\wedge}\left[I-\left(\frac{\hat{w}_{k}+\hat{w}_{k+1}}{2}-b_{w_{k}}\right)^{\wedge} \delta t\right] \delta t \\ f_{34} & =-\frac{1}{2}\left( \mathbf{R}_{k}^{b_{k}}+ \mathbf{R}_{k+1}^{b_{k}}\right) \delta t \\ f_{35} & =\frac{1}{2} \mathbf{R}_{k+1}^{b_{k}}\left(\hat{a}_{k+1}-b_{a_{k}}\right) ^{\wedge}\delta t^{2} \\ g_{32} & =\frac{1}{4} \mathbf{R}_{k+1}^{b_{k}}\left(\hat{a}_{k+1}-b_{a_{k}}\right) ^{\wedge}\delta t^{2} \\ g_{34} & =\frac{1}{4} \mathbf{R}_{k+1}^{b_{k}}\left(\hat{a}_{k+1}-b_{a_{k}}\right)^{\wedge} \delta t^{2} \end{aligned} f32f34f35g32g34=21Rkbk(a^kbak)δt21Rk+1bk(a^k+1bak)[I(2w^k+w^k+1bwk)δt]δt=21(Rkbk+Rk+1bk)δt=21Rk+1bk(a^k+1bak)δt2=41Rk+1bk(a^k+1bak)δt2=41Rk+1bk(a^k+1bak)δt2
对于 δ α k + 1 \delta \alpha_{k+1} δαk+1,由连续形式可知:
δ α ˙ t b k = δ β t b k \delta \dot{\alpha}_{t}^{b_{k}} = \delta \beta_{t}^{b_{k}} δα˙tbk=δβtbk
则离散形式:
δ α ˙ k b k = 1 2 ( δ β k b k + δ β k + 1 b k ) = 1 2 ( δ β k b k + δ β k b k + f 32 δ θ k + f 35 δ b w k + g 32 n w k + g 34 n w k + 1 − 1 2 ( R k b k + R k + 1 b k ) δ t δ b a k − 1 2 R k b k δ t n a k − 1 2 R k + 1 b k δ t n a k + 1 ) = δ β k b k + 1 2 f 32 δ θ k + 1 2 f 35 δ b w k + 1 2 g 32 n w k + 1 2 g 34 n w k + 1 − 1 4 ( R k b k + R k + 1 b k ) δ t δ b a k − 1 4 R k b k δ t n a k − 1 4 R k + 1 b k δ t n a k + 1 \begin{aligned} \delta \dot{\alpha}_{k}^{b_{k}}= & \frac{1}{2}\left(\delta \beta_{k}^{b_{k}}+\delta \beta_{k+1}^{b_{k}}\right) \\ = & \frac{1}{2}\left(\delta \beta_{k}^{b_{k}}+\delta \beta_{k}^{b_{k}}+f_{32} \delta \theta_{k}+f_{35} \delta b_{w_{k}}+g_{32} n_{w_{k}}+g_{34} n_{w_{k+1}}\right. \\ & \left.-\frac{1}{2}\left(\mathbf{R}_{k}^{b_{k}}+\mathbf{R}_{k+1}^{b_{k}}\right) \delta t \delta b_{a_{k}}-\frac{1}{2} \mathbf{R}_{k}^{b_{k}} \delta t n_{a_{k}}-\frac{1}{2} \mathbf{R}_{k+1}^{b_{k}} \delta t n_{a_{k+1}}\right) \\ = & \delta \beta_{k}^{b_{k}}+\frac{1}{2} f_{32} \delta \theta_{k}+\frac{1}{2} f_{35} \delta b_{w_{k}}+\frac{1}{2} g_{32} n_{w_{k}}+\frac{1}{2} g_{34} n_{w_{k+1}} \\ & -\frac{1}{4}\left(\mathbf{R}_{k}^{b_{k}}+\mathbf{R}_{k+1}^{b_{k}}\right) \delta t \delta b_{a_{k}}-\frac{1}{4} \mathbf{R}_{k}^{b_{k}} \delta t n_{a_{k}}-\frac{1}{4} \mathbf{R}_{k+1}^{b_{k}} \delta t n_{a_{k+1}} \end{aligned} δα˙kbk===21(δβkbk+δβk+1bk)21(δβkbk+δβkbk+f32δθk+f35δbwk+g32nwk+g34nwk+121(Rkbk+Rk+1bk)δtδbak21Rkbkδtnak21Rk+1bkδtnak+1)δβkbk+21f32δθk+21f35δbwk+21g32nwk+21g34nwk+141(Rkbk+Rk+1bk)δtδbak41Rkbkδtnak41Rk+1bkδtnak+1
由导数的定义可知:
δ α k + 1 = δ α k + δ α ˙ k b k δ t = δ α k + ( δ β k b k + 1 2 f 32 δ θ k + 1 2 f 35 δ b w k + 1 2 g 32 n w k + 1 2 g 34 n w k − 1 − 1 4 ( R k b k + R k + 1 b k ) δ t δ b a k − 1 4 R k b k δ t n a k − 1 4 R k − 1 b k δ t n a k + 1 ) δ t = δ α k + δ β k b k δ t + δ t 2 f 32 δ θ k + δ t 2 f 35 δ b w k + δ t 2 g 32 n w k + δ t 2 g 34 n w k + 1 − δ t 4 ( R k b k + R k + 1 b k ) δ t δ b a k − δ t 4 R k b k δ t n a k − δ t 4 R k + 1 b k δ t n a k + 1 = δ α k + δ t 2 f 32 δ θ k + δ t δ β k b k − δ t 4 ( R k b k + R k + 1 b k ) δ t δ b a k + δ t 2 f 35 δ b w k − δ t 4 R k b k δ t n a k + δ t 2 g 32 n w k − δ t 4 R k + 1 b k δ t n a k + 1 + δ t 2 g 34 n w k − 1 \begin{aligned} \delta \alpha_{k+1}= & \delta \alpha_{k}+\delta \dot{\alpha}_{k}^{b_{k}} \delta t \\ = & \delta \alpha_{k}+\left(\delta \beta_{k}^{b_{k}}+\frac{1}{2} f_{32} \delta \theta_{k}+\frac{1}{2} f_{35} \delta b_{w_{k}}+\frac{1}{2} g_{32} n_{w_{k}}+\frac{1}{2} g_{34} n_{w_{k-1}}\right. \\ & \left.-\frac{1}{4}\left(\mathbf{R}_{k}^{b_{k}}+\mathbf{R}_{k+1}^{b_{k}}\right) \delta t \delta b_{a_{k}}-\frac{1}{4} \mathbf{R}_{k}^{b_{k}} \delta t n_{a_{k}}-\frac{1}{4} \mathbf{R}_{k-1}^{b_{k}} \delta t n_{a_{k+1}}\right) \delta t \\ = & \delta \alpha_{k}+\delta \beta_{k}^{b_{k}} \delta t+\frac{\delta t}{2} f_{32} \delta \theta_{k}+\frac{\delta t}{2} f_{35} \delta b_{w_{k}}+\frac{\delta t}{2} g_{32} n_{w_{k}}+\frac{\delta t}{2} g_{34} n_{w_{k+1}} \\ & -\frac{\delta t}{4}\left(\mathbf{R}_{k}^{b_{k}}+\mathbf{R}_{k+1}^{b_{k}}\right) \delta t \delta b_{a_{k}}-\frac{\delta t}{4} \mathbf{R}_{k}^{b_{k}} \delta t n_{a_{k}}-\frac{\delta t}{4} \mathbf{R}_{k+1}^{b_{k}} \delta t n_{a_{k+1}} \\ = & \delta \alpha_{k}+\frac{\delta t}{2} f_{32} \delta \theta_{k}+\delta t \delta \beta_{k}^{b_{k}}-\frac{\delta t}{4}\left(\mathbf{R}_{k}^{b_{k}}+\mathbf{R}_{k+1}^{b_{k}}\right) \delta t \delta b_{a_{k}}+\frac{\delta t}{2} f_{35} \delta b_{w_{k}} \\ & -\frac{\delta t}{4} \mathbf{R}_{k}^{b_{k}} \delta t n_{a_{k}}+\frac{\delta t}{2} g_{32} n_{w_{k}}-\frac{\delta t}{4} \mathbf{R}_{k+1}^{b_{k}} \delta t n_{a_{k+1}}+\frac{\delta t}{2} g_{34} n_{w_{k-1}} \end{aligned} δαk+1====δαk+δα˙kbkδtδαk+(δβkbk+21f32δθk+21f35δbwk+21g32nwk+21g34nwk141(Rkbk+Rk+1bk)δtδbak41Rkbkδtnak41Rk1bkδtnak+1)δtδαk+δβkbkδt+2δtf32δθk+2δtf35δbwk+2δtg32nwk+2δtg34nwk+14δt(Rkbk+Rk+1bk)δtδbak4δtRkbkδtnak4δtRk+1bkδtnak+1δαk+2δtf32δθk+δtδβkbk4δt(Rkbk+Rk+1bk)δtδbak+2δtf35δbwk4δtRkbkδtnak+2δtg32nwk4δtRk+1bkδtnak+1+2δtg34nwk1
其中:
f 12 = δ t 2 f 32 f 14 = − δ t 4 ( R k b k + R k + 1 b k ) δ t f 15 = δ t 2 f 35 g 11 = − δ t 4 R k b k δ t g 12 = δ t 2 g 32 g 13 = − δ t 4 R k + 1 b k δ t g 14 = δ t 2 g 34 \begin{array}{l} f_{12}=\frac{\delta t}{2} f_{32} \\ f_{14}=-\frac{\delta t}{4}\left(\mathbf{R}_{k}^{b_{k}}+\mathbf{R}_{k+1}^{b_{k}}\right) \delta t \\ f_{15}=\frac{\delta t}{2} f_{35} \\ g_{11}=-\frac{\delta t}{4} \mathbf{R}_{k}^{b_{k}} \delta t \\ g_{12}=\frac{\delta t}{2} g_{32} \\ g_{13}=-\frac{\delta t}{4} \mathbf{R}_{k+1}^{b_{k}} \delta t \\ g_{14}=\frac{\delta t}{2} g_{34} \end{array} f12=2δtf32f14=4δt(Rkbk+Rk+1bk)δtf15=2δtf35g11=4δtRkbkδtg12=2δtg32g13=4δtRk+1bkδtg14=2δtg34
协方差与雅可比矩阵:
δ z k + 1 15 × 1 = F 15 × 15 δ z k 15 × 1 + V 15 × 18 Q 18 × 1 \delta z_{k+1}^{15 \times1}=F^{15 \times 15}\delta z_{k}^{15 \times 1} +V^{15 \times 18}Q^{18 \times 1} δzk+115×1=F15×15δzk15×1+V15×18Q18×1
协方差迭代公式:
P k + 1 b k 15 × 15 = F P k b k F T + V Q V T {P_{k+1}^{b_{k}}}^{15 \times 15} = FP_{k}^{b_{k}}F^{T}+VQV^{T} Pk+1bk15×15=FPkbkFT+VQVT
其中,初始值 P b k b k = 0 P_{b_{k}}^{b_{k}}=0 Pbkbk=0,Q为噪声的对角协方差矩阵:
Q 18 × 18 = [ σ a 2 0 0 0 0 0 0 σ w 2 0 0 0 0 0 0 σ a 2 0 0 0 0 0 0 σ w 2 0 0 0 0 0 0 σ b a 2 0 0 0 0 0 0 σ b w 2 ] \mathbf{Q}^{18 \times 18}=\left[\begin{array}{cccccc} \sigma_{a}^{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \sigma_{w}^{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma_{a}^{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \sigma_{w}^{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \sigma_{b_{a}}^{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \sigma_{b_{w}}^{2} \end{array}\right] Q18×18= σa2000000σw2000000σa2000000σw2000000σba2000000σbw2
另外根据上式可获得误差项的jacobian迭代公式:
J k + 1 15 × 15 = F J k J_{k+1}^{15 \times 15}=FJ_{k} Jk+115×15=FJk
其中,jacobian的初始值为 J k = I J_{k} =I Jk=I

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

火柴的初心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值