### 关于 Relation Network 的 Few-Shot Learning 复现
#### 使用 PyTorch 实现 Relation Network
以下是基于 PyTorch 的 Relation Network 实现代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets
class CNNEncoder(nn.Module):
"""CNN Encoder"""
def __init__(self):
super(CNNEncoder, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=0),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2))
self.layer2 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, padding=0),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2))
self.layer3 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU())
self.layer4 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU())
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
return out.view(out.size(0), -1)
class RelationNetwork(nn.Module):
"""Relation Network"""
def __init__(self, input_size, hidden_size):
super(RelationNetwork, self).__init__()
self.fc1 = nn.Linear(input_size*2, hidden_size)
self.fc2 = nn.Linear(hidden_size, 1)
def forward(self, x):
out = torch.relu(self.fc1(x))
out = torch.sigmoid(self.fc2(out))
return out
def train(model_encoder, model_relation, optimizer, criterion, support_set, query_set, device='cpu'):
model_encoder.train()
model_relation.train()
support_features = model_encoder(support_set.to(device)) # Extract features from the support set
query_features = model_encoder(query_set.to(device)) # Extract features from the query set
relations = []
for i in range(len(support_features)):
pair_feature = torch.cat([support_features[i], query_features], dim=-1) # Concatenate pairs of features
relation_score = model_relation(pair_feature).view(-1) # Compute similarity score
relations.append(relation_score)
output = torch.stack(relations).squeeze() # Stack all scores into a tensor
target = torch.zeros(output.shape[0]).to(device) # Create ground truth labels
loss = criterion(output, target) # Calculate loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss.item()
```
上述代码实现了 `CNNEncoder` 和 `RelationNetwork`,并定义了一个简单的训练函数。
---
#### TensorFlow 实现 Relation Network
下面是基于 TensorFlow 的 Relation Network 实现代码示例:
```python
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, BatchNormalization, MaxPooling2D, Flatten, Dense, ReLU, Input, concatenate
from tensorflow.keras.models import Model
def create_cnn_encoder():
inputs = Input(shape=(84, 84, 3))
x = Conv2D(filters=64, kernel_size=3)(inputs)
x = BatchNormalization()(x)
x = ReLU()(x)
x = MaxPooling2D(pool_size=2)(x)
x = Conv2D(filters=64, kernel_size=3)(x)
x = BatchNormalization()(x)
x = ReLU()(x)
x = MaxPooling2D(pool_size=2)(x)
x = Conv2D(filters=64, kernel_size=3, padding="same")(x)
x = BatchNormalization()(x)
x = ReLU()(x)
x = Conv2D(filters=64, kernel_size=3, padding="same")(x)
x = BatchNormalization()(x)
x = ReLU()(x)
outputs = Flatten()(x)
encoder_model = Model(inputs=inputs, outputs=outputs, name="cnn_encoder")
return encoder_model
def create_relation_network(input_dim, hidden_units):
feature_a = Input(shape=input_dim)
feature_b = Input(shape=input_dim)
concatenated = concatenate([feature_a, feature_b])
x = Dense(units=hidden_units, activation="relu")(concatenated)
x = Dense(units=1, activation="sigmoid")(x)
relation_model = Model(inputs=[feature_a, feature_b], outputs=x, name="relation_network")
return relation_model
# Example usage
encoder = create_cnn_encoder()
relation_net = create_relation_network(input_dim=1600, hidden_units=8)
```
此代码展示了如何使用 Keras API 构建 CNN 编码器和关系网络模型。
---
#### 方法概述
Relation Network 是一种通过学习嵌入空间中的相似性来解决小样本分类问题的有效方法[^2]。其核心思想在于设计一个深度非线性距离度量函数,该函数能够捕捉查询样本和支持集之间的关系。相比其他元学习方法,Relation Network 更加简洁高效,在多种任务上表现出色。
为了验证其实效性,可以采用 Omniglot 或 Mini-ImageNet 数据集进行实验,并按照 N-way-K-shot 设置划分支持集与查询集。
---