论文复现—1—A Simple yet Effective Relation Information Guided Approach for Few-Shot Relation Extraction

论文阅读笔记在笔记本上,整体流程在笔记本上做推导,不在电子版存稿了。较为简单。

数据加载:

在这里插入图片描述
我设置5-way-5-shot.
pid2name:描述了relation的name和relation description。

报错提示:显卡不够。

我感觉,作者在fewrel数据集上做的实验,更多是为了测试领域迁移下 ,模型的性能。

在一些其他小样本数据集上的实验,可能是真的N -way-k-shot,和fewrel数据集还是有较大不同的```


然后降低了实验数据量,在实验设置中,将以下参数做出调整为:

```c
parser.add_argument('--trainN', default=1, type=int,
            help='N in train')#10
    parser.add_argument('--N', default=5, type=int,
            help='N way')
    parser.add_argument('--K', default=1, type=int,
            help='K shot')
    parser.add_argument('--Q', default=1, type=int,
            help='Num of query per class')#5

实验结果

实验结果记录如下:

step: 2000 | loss: 0.313262, accuracy: 100.00%
Use val dataset
[EVAL] step: 1000 | accuracy: 43.38%
Best checkpoint
step: 4000 | loss: 0.313262, accuracy: 100.00%
Use val dataset
[EVAL] step: 1000 | accuracy: 37.33%
step: 6000 | loss: 0.313262, accuracy: 100.00%
Use val dataset
[EVAL] step: 1000 | accuracy: 34.91%
step: 8000 | loss: 0.313262, accuracy: 100.00%
Use val dataset
[EVAL] step: 1000 | accuracy: 35.69%
step: 10000 | loss: 0.313262, accuracy: 100.00%
Use val dataset
[EVAL] step: 1000 | accuracy: 39.12%
step: 12000 | loss: 0.313262, accuracy: 100.00%

可以明显观察到的是,loss没有在下降。对于实验结果,我持一定的怀疑态度,但作者在git中又给出了训练好的模型。这,,让我,还是有点怀疑…

### 关于 Relation Network 的 Few-Shot Learning 复现 #### 使用 PyTorch 实现 Relation Network 以下是基于 PyTorch 的 Relation Network 实现代码示例: ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import transforms, datasets class CNNEncoder(nn.Module): """CNN Encoder""" def __init__(self): super(CNNEncoder, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, padding=0), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(2)) self.layer2 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=3, padding=0), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(2)) self.layer3 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU()) self.layer4 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU()) def forward(self, x): out = self.layer1(x) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) return out.view(out.size(0), -1) class RelationNetwork(nn.Module): """Relation Network""" def __init__(self, input_size, hidden_size): super(RelationNetwork, self).__init__() self.fc1 = nn.Linear(input_size*2, hidden_size) self.fc2 = nn.Linear(hidden_size, 1) def forward(self, x): out = torch.relu(self.fc1(x)) out = torch.sigmoid(self.fc2(out)) return out def train(model_encoder, model_relation, optimizer, criterion, support_set, query_set, device='cpu'): model_encoder.train() model_relation.train() support_features = model_encoder(support_set.to(device)) # Extract features from the support set query_features = model_encoder(query_set.to(device)) # Extract features from the query set relations = [] for i in range(len(support_features)): pair_feature = torch.cat([support_features[i], query_features], dim=-1) # Concatenate pairs of features relation_score = model_relation(pair_feature).view(-1) # Compute similarity score relations.append(relation_score) output = torch.stack(relations).squeeze() # Stack all scores into a tensor target = torch.zeros(output.shape[0]).to(device) # Create ground truth labels loss = criterion(output, target) # Calculate loss optimizer.zero_grad() loss.backward() optimizer.step() return loss.item() ``` 上述代码实现了 `CNNEncoder` 和 `RelationNetwork`,并定义了一个简单的训练函数。 --- #### TensorFlow 实现 Relation Network 下面是基于 TensorFlow 的 Relation Network 实现代码示例: ```python import tensorflow as tf from tensorflow.keras.layers import Conv2D, BatchNormalization, MaxPooling2D, Flatten, Dense, ReLU, Input, concatenate from tensorflow.keras.models import Model def create_cnn_encoder(): inputs = Input(shape=(84, 84, 3)) x = Conv2D(filters=64, kernel_size=3)(inputs) x = BatchNormalization()(x) x = ReLU()(x) x = MaxPooling2D(pool_size=2)(x) x = Conv2D(filters=64, kernel_size=3)(x) x = BatchNormalization()(x) x = ReLU()(x) x = MaxPooling2D(pool_size=2)(x) x = Conv2D(filters=64, kernel_size=3, padding="same")(x) x = BatchNormalization()(x) x = ReLU()(x) x = Conv2D(filters=64, kernel_size=3, padding="same")(x) x = BatchNormalization()(x) x = ReLU()(x) outputs = Flatten()(x) encoder_model = Model(inputs=inputs, outputs=outputs, name="cnn_encoder") return encoder_model def create_relation_network(input_dim, hidden_units): feature_a = Input(shape=input_dim) feature_b = Input(shape=input_dim) concatenated = concatenate([feature_a, feature_b]) x = Dense(units=hidden_units, activation="relu")(concatenated) x = Dense(units=1, activation="sigmoid")(x) relation_model = Model(inputs=[feature_a, feature_b], outputs=x, name="relation_network") return relation_model # Example usage encoder = create_cnn_encoder() relation_net = create_relation_network(input_dim=1600, hidden_units=8) ``` 此代码展示了如何使用 Keras API 构建 CNN 编码器和关系网络模型。 --- #### 方法概述 Relation Network 是一种通过学习嵌入空间中的相似性来解决小样本分类问题的有效方法[^2]。其核心思想在于设计一个深度非线性距离度量函数,该函数能够捕捉查询样本和支持集之间的关系。相比其他元学习方法,Relation Network 更加简洁高效,在多种任务上表现出色。 为了验证其实效性,可以采用 Omniglot 或 Mini-ImageNet 数据集进行实验,并按照 N-way-K-shot 设置划分支持集与查询集。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YJII

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值