InstructGPT:Training language models to follow instructions with human feedback

Training language models to follow instructions with human feedback

通过人类反馈的微调,在广泛的任务中使语言模型与用户的意图保持一致
aligning language models with user intent on a wide range of tasks by fine-tuning
with human feedback

实验动机

language models to be helpful (they should help the user solve their task), honest (they shouldn’t fabricate information or mislead the user), and harmless (they should not cause physical, psychological, or social harm to people or the environment).

实验过程

  1. 我们首先聘请了一个由40名承包商组成的团队,根据他们在筛选测试中的表现,为我们的数据贴上标签(详见3.4节和附录B.1)。
  2. We then collect a dataset of human-written demonstrations of the
    desired output behavior on (mostly English) prompts
    submitted to
    the OpenAI API3 and some labeler-written prompts
  3. we collect a dataset of human-labeled comparisons between
    outputs from our models on a larger set of API prompts.
  4. We then train a reward model (RM) on this dataset to predict
    which model output our labelers would prefer.
  5. Finally, we use this RM as a reward function and fine-tune our supervised learning baseline to maximize this reward using the PPO algorithm (Schulman et al., 2017).

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YingJingh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值