从零开始mmdetection3d环境搭建

  1. 配置CUDA环境
    1. 1 安装cuda toolkit

进入https://developer.nvidia.com/cuda-toolkit-archive 中选择对应的工具包版本,根据下面的安装命令逐一输入,即可完成安装。

使用

nvcc -V

查看cuda版本,当前cuda版本为11.7

 

 

  1. 2 安装cuDnn

从官网下载cudnn压缩包,将解压出来的lib64和include中所有的内容都拷贝到/usr/local/cuda的lib64和include中

查看cudnn版本,这里显示cudnn版本为8.5.0

cat /usr/local/cuda-11.7/include/cudnn_version.h | grep CUDNN

 

 

2. 配置pytorch环境

2.1 先创建一个名为mmdetection3d的虚拟环境,用来配置mmdetection3d,python版本为3.8

conda create -n mmdetection3d python=3.8

2.2 安装完成后,激活该虚拟环境

conda activate mmdetection3d

2.3 安装pytorch

进入pytorch官网选择合适的pytorch版本

conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia

至此,pytorch环境安装完成

3. 搭建mmdetection3d环境

3.1 通过pip安装openmim,mim是OpenMMLab的包管理工具。

pip3 install openmim

 

3.2 通过mim 安装mmcv-full,

mim install mmcv-full

3.3 接下来通过mim安装mmdet

3.4 通过mim安装mmsegmentation

3.5 通过git拉取mmdetection3d库

3.6进入mmdetection3d文件夹安装库依赖

 

4. 验证

下载预训练模型,下载地址为https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth

新建checkpoints目录,将下载下来的模型文件放入该目录。

4.1运行测试脚本进行验证

运行完成之后,demo文件夹下会产生一个kitti_000008文件夹,包含kitti_000008_points.obj和  kitti_000008_pred.obj两个obj文件。前者是点云文件,后者是检测的三维结果。这两个文件可以直接拖入到CloudCompare软件中进行显示。

 

CloudCompare软件

cloudcompare是一个点云可视化的软件,并且可以完成一些基础的点云操作。软件界面如图所示:

验证结果显示如下图所示:

点云文件

 

预测文件

<think>好的,我需要帮助用户配置MMDetection3D的运行环境。首先,我得仔细看看用户提供的引用内容,里面有几个安装教程和注意事项。用户提到了不同的引用来源,比如安装MMDetection3D v1.4.0的步骤,使用conda环境,安装依赖库,验证安装,以及可能遇到的版本问题。 首先,我应该整理出安装的基本步骤。根据引用[1]、[2]、[3],安装流程大致分为系统环境准备、创建conda环境、安装依赖库(如PyTorch、MMCV、MMEngine等)、安装MMDetection3D本身,以及验证安装是否正确。 引用[5]提到环境一致性很重要,版本差异会导致问题,所以需要严格按照官方版本配置。例如,MMCV需要2.0.0rc4,MMDetection需要3.0.0,Python版本3.8,CUDA 11.3等。这些具体的版本号必须正确无误,否则容易安装失败。 然后,用户可能遇到的问题包括依赖库版本冲突、MinkowskiEngine和TorchSparse的安装问题,以及系统依赖库的缺失。引用[4]提到需要安装libfreeimage3和libfreeimage-dev,这也是需要注意的地方。 接下来,我需要按照逻辑步骤组织答案:从系统环境开始,创建conda环境,安装PyTorch和相关库,再安装MMCV和MMDetection,然后处理MMDetection3D的安装,最后验证。此外,还要提醒用户关于附加库的安装,如MinkowskiEngine,这可能需要单独处理,并且可能需要系统依赖。 同时,要确保使用正确的命令,比如用mim安装MMEngine、MMCV和MMDetection,因为引用[3]提到了使用MIM工具。此外,用户可能需要从GitHub克隆MMDetection3D的仓库,并切换到正确的版本分支,如v1.4.0,然后进行编译安装。 最后,验证部分需要运行测试脚本,如demo/pcd_demo.py,并检查是否有错误输出。可能还需要安装点云数据处理库,比如plyfile,这在引用[2]中有提到。 还要注意用户提到的中文回答和LaTeX格式的问题。虽然这里可能不需要数学公式,但如果有代码块或命令行指令,需要用正确的格式展示。例如,使用反引号包裹代码,并确保命令正确无误。 总结一下,步骤应该是: 1. 系统环境准备(Ubuntu 18.04,CUDA 11.3等) 2. 创建conda环境,指定Python版本 3. 安装PyTorch和相关库(如torchvision) 4. 通过MIM安装MMEngine、MMCV、MMDetection 5. 安装MMDetection3D,从GitHub克隆并安装 6. 安装附加库(MinkowskiEngine, TorchSparse) 7. 安装系统依赖(libfreeimage) 8. 验证安装是否成功 需要特别注意版本匹配,比如MMCV 2.0.0rc4对应MMDetection 3.0.0,以及CUDA和PyTorch的版本是否兼容。如果用户的环境不同,可能需要调整版本,但引用[5]建议保持与官方一致以减少问题。 可能用户会遇到的问题包括安装MinkowskiEngine时的编译错误,这时候可能需要检查CUDA版本和gcc版本是否符合要求。此外,安装过程中如果出现依赖缺失,可能需要使用apt-get安装相应的系统库,如引用[4]提到的libfreeimage。 在回答中需要清晰地列出每一步的命令,并给出注意事项,比如切换conda环境,使用正确的版本号,以及如何处理可能出现的错误。同时,生成相关问题需要考虑用户可能的后续疑问,比如如何验证环境是否正确,如何处理版本冲突,或者如何在不同系统上配置环境。</think>### MMDetection3D环境配置分步指南 #### 1. 系统环境准备 - **操作系统**:推荐Ubuntu 18.04/20.04(其他系统需调整依赖) - **CUDA版本**:11.3(与PyTorch版本强相关,需严格匹配)[^1] - **显卡驱动**:需支持CUDA 11.3(如470.82版本) #### 2. 创建conda虚拟环境 ```bash conda create -n mmdet3d python=3.8 -y conda activate mmdet3d ``` #### 3. 安装PyTorch基础环境 ```bash pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113 ``` #### 4. 安装MM系列依赖库 ```bash pip install -U openmim mim install mmengine mim install "mmcv==2.0.0rc4" mim install "mmdet==3.0.0" ``` #### 5. 安装MMDetection3D ```bash git clone https://github.com/open-mmlab/mmdetection3d.git cd mmdetection3d git checkout v1.4.0 # 指定版本 pip install -v -e . ``` #### 6. 安装附加依赖库 - **MinkowskiEngine**(点云处理): ```bash pip install -U git+https://github.com/NVIDIA/MinkowskiEngine -v ``` - **TorchSparse**(稀疏卷积): ```bash sudo apt-get install libsparsehash-dev # 系统依赖 pip install --upgrade git+https://github.com/mit-han-lab/torchsparse.git@v1.4.0 ``` #### 7. 安装系统级依赖 ```bash sudo apt-get install libfreeimage3 libfreeimage-dev # 点云可视化支持[^4] ``` #### 8. 验证安装 运行测试命令: ```bash python demo/pcd_demo.py demo/data/kitti/kitti_000008.bin configs/second/hv_second_secfpn_8xb6-80e_kitti-3d-car.py checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth ``` #### 配置要点 1. **版本严格匹配**:PyTorch、CUDA、MMCV必须保持版本链兼容[^5] 2. **编译依赖**:安装MinkowskiEngine需确保gcc版本≥7.4 3. **网络代理**:部分仓库需访问GitHub,建议配置镜像源或代理
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值