单目深度估计NYU数据集

单目深度估计NYU数据集
谷歌仓库链接


https://drive.google.com/file/d/1AysroWpfISmm-yRFGBgFTrLy6FjQwvwP/view?usp=sharing

可能需要特殊访问,
下载内容为 sync.zip 大约6G 本链接为GITHub-BTS 提供,也在这感谢其分享。

腾讯微云链接

https://share.weiyun.com/rIhcChm7

https://share.weiyun.com/rIhcChm7
没有特殊工具的,可以从腾讯微云下载,本人已经上传,可免费下载

Sun-RGBD 数据集

https://rgbd.cs.princeton.edu/

点击 V1 下载
在这里插入图片描述

### 使用TensorFlow实现单目深度估计 #### 单目深度估计简介 单目深度估计是从单一图像中预测场景中物体距离相机的距离的任务。该任务具有挑战性,因为仅依靠一张图片无法提供立体视觉带来的直接深度线索。然而,通过训练神经网络模型并利用大量带标注的数据集可以有效解决这一问题。 #### 数据准备 为了构建有效的单目深度估计模型,需要收集大量的成对数据——即输入的RGB彩色图及其对应的地面真实深度图。常用的数据集包括KITTI、NYU Depth V2等[^1]。这些数据集中包含了丰富的室内室外环境样本,有助于提高模型泛化能力。 #### 构建卷积神经网络架构 一种常见的做法是采用编码器-解码器结构来设计用于单目深度估计的CNN框架: ```python import tensorflow as tf from tensorflow.keras import layers, models def build_model(input_shape=(None, None, 3)): inputs = layers.Input(shape=input_shape) # Encoder part (downsampling) conv1 = layers.Conv2D(64, kernel_size=7, strides=2, padding='same', activation='relu')(inputs) pool1 = layers.MaxPooling2D(pool_size=(3, 3), strides=2)(conv1) ... # More convolutional and pooling layers here # Decoder part (upsampling) upsampled_layer = ... outputs = layers.Conv2DTranspose(filters=1, kernel_size=3, strides=2, padding="same", activation=None)(upsampled_layer) model = models.Model(inputs=[inputs], outputs=[outputs]) return model ``` 此代码片段展示了如何定义一个简单的基于Keras API 的编码器-解码器风格的CNN模型。实际应用时可根据具体需求调整层数量及参数设置。 #### 训练过程配置 在完成上述准备工作之后,就可以着手编写损失函数以及优化算法的选择了。对于回归类问题而言,均方误差(MSE)是一个不错的选择;而对于某些特定应用场景下也可以考虑其他形式如绝对差异(L1 Loss)[^3]。 ```python model.compile(optimizer=tf.optimizers.Adam(), loss='mean_squared_error') history = model.fit(train_images, train_depth_maps, epochs=EPOCHS, batch_size=BATCH_SIZE, validation_data=(val_images, val_depth_maps)) ``` 这段脚本说明了怎样编译和拟合所创建好的模型实例至给定的数据集上进行学习。 #### 测试与评估 当经过充分迭代后的模型收敛后,便可以在测试集上来验证其性能表现,并计算诸如平均绝对误差(MAE)、相对误差百分比等指标来进行定量分析。 ```python test_loss = model.evaluate(test_images, test_depth_maps) predictions = model.predict(sample_test_image) plt.imshow(predictions.squeeze()) plt.show() ``` 以上命令可用于展示预测结果可视化效果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lins H

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值