面试题目
仿射变换,给出一个点在平面旋转 θ \theta θ角的仿射矩阵.
题目内容
仿射变换(ATF,Affine Transformation) 是图像的线性变换,对于一个集合 X X X 的仿射变换可以表示为:
f ( x ) = A x + b , x ∈ X . f(x) = Ax+b, x \in X. f(x)=Ax+b,x∈X.
对于我们需要处理的图像集合而言,可以表示为:
g ( x , y ) = A f ( x , y ) + b . g(x,y) = Af(x,y)+b. g(x,y)=Af(x,y)+b.
其中 A A A矩阵就是仿射变换矩阵.
仿射变换
内容介绍可以参考链接:仿射变换介绍
常用的仿射变换包括:
缩放: Scale
旋转: Rotate
平移: Transform
反射: Reflection
错切: Shear
可以参考图:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-G7dm8xJc-1585143190947)(https://i.loli.net/2019/08/05/caeW6pgbhHNuKUT.png)]
仿射变换中集合中的一些性质保持不变:
(1)凸性
(2)共线性:若几个点变换前在一条线上,则仿射变换后仍然在一条线上
(3)平行性:若两条线变换前平行,则变换后仍然平行
(4)共线比例不变性:变换前一条线上两条线段的比例,在变换后比例仍然步
注:所有的三角形都能通过仿射变化为其他三角形,所有平行四边形也能仿射变换为另一个平行四边形。
由于仿射变换是线性的,所以仿射变换的任意组合仍然是线性的.
仿射变换矩阵推导
仿射变换矩阵推导以 矩阵旋转为例,也是面试题目的内容:
假设原本点为 C C C 点,旋转