面试--仿射变换

本文讨论了面试中常见的仿射变换问题,特别是如何通过仿射变换矩阵进行角度旋转。介绍了仿射变换的基本概念,如缩放、旋转、平移、反射和错切,并强调了仿射变换保持的一些特性,如凸性、共线性和平行性。同时,详细推导了二维平面上点旋转的仿射变换矩阵。
摘要由CSDN通过智能技术生成

面试题目

仿射变换,给出一个点在平面旋转 θ \theta θ角的仿射矩阵.

题目内容

仿射变换(ATF,Affine Transformation) 是图像的线性变换,对于一个集合 X X X 的仿射变换可以表示为:
f ( x ) = A x + b , x ∈ X . f(x) = Ax+b, x \in X. f(x)=Ax+b,xX.
对于我们需要处理的图像集合而言,可以表示为:
g ( x , y ) = A f ( x , y ) + b . g(x,y) = Af(x,y)+b. g(x,y)=Af(x,y)+b.
其中 A A A矩阵就是仿射变换矩阵.

仿射变换

内容介绍可以参考链接:仿射变换介绍

常用的仿射变换包括:
缩放: Scale
旋转: Rotate
平移: Transform
反射: Reflection
错切: Shear

可以参考图:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-G7dm8xJc-1585143190947)(https://i.loli.net/2019/08/05/caeW6pgbhHNuKUT.png)]

仿射变换中集合中的一些性质保持不变:
(1)凸性
(2)共线性:若几个点变换前在一条线上,则仿射变换后仍然在一条线上
(3)平行性:若两条线变换前平行,则变换后仍然平行
(4)共线比例不变性:变换前一条线上两条线段的比例,在变换后比例仍然步

注:所有的三角形都能通过仿射变化为其他三角形,所有平行四边形也能仿射变换为另一个平行四边形。

由于仿射变换是线性的,所以仿射变换的任意组合仍然是线性的.

仿射变换矩阵推导

仿射变换矩阵推导以 矩阵旋转为例,也是面试题目的内容:
假设原本点为 C C C 点,旋转

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值