域泛化(CIRL)

Causality Inspired Representation Learning for Domain Generalization因果启发的域泛化表示学习

目录

Causality Inspired Representation Learning for Domain Generalization因果启发的域泛化表示学习

本文脑图

研究背景

域泛化

核心挑战

本文创新点

 结构因果模型(SCM)

因果启发的表征学习算法(CIRL)

实验

总结


 

本文脑图

研究背景

域泛化

域泛化本质上是一个分布外(out-of-distribution)问题,旨在将从多个源域中学习到的知识泛化到一个未见过的目标域。

核心挑战

1.分布外泛化的本质难题

目标域数据分布可能与源域显著不同(如风格、背景、视角变化),导致模型性能大幅下降。例如,图像分类中,模型可能依赖源域的统计关联(如 “长颈鹿总出现在草地上”),但目标域背景变化时,此类依赖会导致错误预测。

2.因果机制与统计依赖的割裂

数据与标签的统计依赖可能包含大量域相关的非因果因素(如 “手写风格”“图像背景”),而真正决定标签的是因果因素(如 “形状”“语义特征”)。传统方法仅建模统计依赖,未分离因果与非因果因素,导致泛化时受域变化干扰。

3.未观测因果因素的复杂性

因果因素通常不可直接观测,且需满足分离性(与非因果因素独立)、联合独立性(各维度无冗余)、因果充分性(包含所有分类所需信息)。现有方法缺乏对这些属性的显式建模,难以有效提取因果表示。

本文创新点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值