Causality Inspired Representation Learning for Domain Generalization因果启发的域泛化表示学习
目录
Causality Inspired Representation Learning for Domain Generalization因果启发的域泛化表示学习
本文脑图

研究背景
域泛化
域泛化本质上是一个分布外(out-of-distribution)问题,旨在将从多个源域中学习到的知识泛化到一个未见过的目标域。
核心挑战
1.分布外泛化的本质难题
目标域数据分布可能与源域显著不同(如风格、背景、视角变化),导致模型性能大幅下降。例如,图像分类中,模型可能依赖源域的统计关联(如 “长颈鹿总出现在草地上”),但目标域背景变化时,此类依赖会导致错误预测。
2.因果机制与统计依赖的割裂
数据与标签的统计依赖可能包含大量域相关的非因果因素(如 “手写风格”“图像背景”),而真正决定标签的是因果因素(如 “形状”“语义特征”)。传统方法仅建模统计依赖,未分离因果与非因果因素,导致泛化时受域变化干扰。
3.未观测因果因素的复杂性
因果因素通常不可直接观测,且需满足分离性(与非因果因素独立)、联合独立性(各维度无冗余)、因果充分性(包含所有分类所需信息)。现有方法缺乏对这些属性的显式建模,难以有效提取因果表示。

最低0.47元/天 解锁文章
222

被折叠的 条评论
为什么被折叠?



