Practical Compact Deep Compressed Sensing实用紧凑的深度压缩感知
目录
Practical Compact Deep Compressed Sensing实用紧凑的深度压缩感知
本文脑图
研究背景
压缩感知
压缩感知是一种利用信号稀疏性或可压缩性,通过远低于传统奈奎斯特率的采样次数,从少量线性测量中精确恢复高维信号的理论与技术。
挑战
采样算子问题
1. 现有方法难以高效将图像信息压缩到少量测量值中。它们多依赖块对角矩阵或线性神经网络算子,只能聚合局部像素信息。
2. 研究存在可解释性不足的问题。数据驱动的压缩感知采样算子直接学习降维,却未融入自然信号特性,训练过程类似黑箱,难以知晓其学习内容及网络结构对采样能力的支撑机制。
3. 相关方法灵活性欠缺,与实际部署和硬件发展脱节。多数深度压缩感知方法学习的是针对特定任务的固定采样矩阵,通常难以适应不同采样率和图像尺寸。
重建算法问题
1.压缩感知神经网络依赖大模型容量学习图像先验以实现高质量重建,导致参数和计算负担加重,且因采样算子与重建网络发展失衡,增加模型容量的边际效益锐减,性能易进入提升瓶颈期。
2.多数压缩感知网络仍采用基础低效模块(如经典残差块)、小型数据集及过时训练策略,而结构设计、数据集与训练策略是训练有效恢复网络的关键,当前缺乏能适应不同采样率和图像尺寸的灵活网络。
本文创新点
新型协同采样算子(COSO)的设计
压缩感知采样方法的发展
(a) 全局密集采样矩阵:
输入原始图像 x(尺寸 ),通过全局矩阵
直接相乘,得到测量值
(尺寸
),是传统的直接矩阵采样方式。
(b) 分块采样矩阵:
将原始图像 x 分解为多个 B×B 的块 {Xi},向量化为 {xi},再用分块矩阵 Am×n 对每个块采样,得到分块测量值 {yi},最后堆叠成最终测量值。这种方式基于分块操作,与全局采样不同。
(c) 深度堆叠线性采样网络:
原始图像 x 通过深度网络(含卷积、平均池化等),输出测量值 Y(尺寸 RCo×Ho×Wo),体现了深度学习在采样中的应用,通过网络层堆叠实现采样。
(d) 协同采样算子(COSO):
(a)深度条件滤波(Deep Conditional Filtering):输入原始图像 X 和压缩感知(CS)比率向量 z=[γD,γG],通过轻量级 CNN(T(⋅))进行条件注入与特征处理,输出分为两个通道 [XD,XG]。网络内部包含卷积层(Conv)、自适应卷积层(Adaptive Conv)和全连接层(FC),根据 z 动态调整参数,实现对图像特征的初步筛选与分配。
(b)基于 DCT 的快速密集采样分支(DCT - based Fast Dense Sampling Branch):对 XD 应用离散余弦变换(DCT,ΦD),将图像转换到频域,再通过元素级掩码 MD 选取部分系数,生成测量值 YD,测量数量 mD=γDN(N=H×W 为图像总像素数),主要捕获图像结构信息。
(c)打乱块对角高斯采样分支(Scrambled Block - diagonal Gaussian Sampling Branch):对 XG 先进行随机像素排列(PG),再与块对角高斯矩阵(ΦG)卷积,通过通道级掩码 MG 选取部分块,生成测量值 YG,测量数量 mG=γGn(n=B2,B 为块尺寸),侧重捕捉图像细节。
(d)等效采样流程(Equivalent Sampling Pipeline):概括线性组件(ΦD,ΦG 等)、变换基、系数、偏置(B)和掩码(M)的协作过程,展示从原始图像到部分掩码测量值 Y 的整体映射,体现 COSO 对结构与细节的协同采样机制。
COSO 算子是线性压缩感知的核心创新,通过解耦图像先验学习与降维,利用 CNN 滤波、DCT 捕获结构、打乱块对角高斯矩阵捕捉细节的双分支设计,高效保留图像信息,且以低内存参数开销兼容现有网络,提升压缩感知重建性能。
基于PGD的PCNet
PGD 指 近端梯度下降算法(Proximal Gradient Descent),是一种专门用于求解带非光滑正则化项的凸优化问题的高效迭代算法。
(a) 基于深度 PGD 展开的典型阶段结构:
从估计x^(k−1)出发,通过梯度下降步骤(⋅)−η(k)A⊤(A(⋅)−y)得到z(k)。随后进入近端映射部分,依次经过卷积层(Conv)、两个残差块(RB)、再一个卷积层,最终通过跳跃连接与输入相加,输出更新后的x^(k),用于基线探索。
(b) 最大化信息流的简化阶段结构:
在(a)的基础上改进,引入单通道物理 - 图像融合与全通道物理 - 特征融合(标记 “C” “S”)。z(k)与S(k−1)融合后,经残差块处理,再通过操作输出S(k),最终得到x^(k)。该结构减少冗余,增强信息流动。
(c) PCNets 的高吞吐量阶段结构:
输入特征图X^(k−1)经上采样(↑r),通过GA等操作注入测量值,结合特征级梯度计算,输出结果。下方展示两种模块:
残差块(RB):由卷积、ReLU、卷积构成,通过跳跃连接实现残差学习。
Swin - Conv 块(SCB):包含卷积、Swin - T - B、CRC - B 等结构,利用混合机制增强特征处理能力,同样采用残差连接。
a) PCNet 三方深度 CS 成像架构:
原始图像 x(RH×W)通过采样子网(SS)进行采样,生成测量值 y=GA(x)(RM)。
初始化子网(IS)将 y 转换为初始估计 xinit=GA+(y),并处理为 R2×H×W,输入到恢复子网(RS)。
恢复子网(RS)通过深度控制的特征级恢复(多阶段处理),最终输出重建图像 x^(RH×W)。
(b) 单像素成像系统中 CS 采样的硬件实现:
目标场景经物镜聚焦到数字微镜器件(DMD)或其他空间光调制器(SLM)。采样图案 A(RM×(H×W),由文中算法从任意采样算子提取)加载到 DMD。
调制后的光经成像透镜,由单光子探测器接收,经模数转换等处理生成测量值 y(RM),用于后续重建。
基于 PGD 算法的 PCNet 将 PGD 迭代过程转化为深度展开结构,既保留了 PGD 的理论可解释性,又借助神经网络提升效率,通过注意力机制与多尺度特征融合实现高精度图像重建,采用轻量化架构优化计算效率,在量化压缩感知、自监督压缩感知等任务中展现强扩展性
实验验证
本文提出的方法(PC - CNN (Ours) 和 PCT (Ours))在 PSNR 和 SSIM 指标上表现优异。例如,第一组 “Parrots” 图像中,PC - CNN (Ours) 的 PSNR/SSIM 为 33.00/0.9344,PCT (Ours) 为 33.69/0.9413,显著高于其他方法;第四组图像中,PCT (Ours) 的 PSNR/SSIM 达到 41.33/0.9828,在细节恢复和整体质量上均优于其他方法。
总结
本文提出实用紧凑的深度压缩感知网络 PCNet,设计协作采样算子 COSO(含深度条件滤波与双分支快速采样)和增强型近端梯度下降展开重建网络,解决现有方法在采样算子不可解释、硬件部署不灵活及重建网络性能瓶颈问题。COSO 通过 CNN 自适应滤波结合 DCT 与加扰块对角高斯矩阵实现高效信息保留,支持任意采样率和图像尺寸;重建网络PCNet引入 10 种增强策略(如 Transformer 块、大规模数据集训练)提升性能。实验表明,PCNet 在自然图像、量化及自监督压缩感知任务中,尤其高分辨率场景下,重建精度和泛化能力显著优于现有方法,并提供硬件部署矩阵提取方案,为单像素成像等实际系统应用奠定基础。