6.5-6.7 理解线性方程组解的结构

本文探讨线性方程组的解的结构,通过高斯-约旦消元法理解无解、唯一解和无限解的情况。线性方程组的解取决于系数矩阵的非零行数与未知数个数的关系。在行最简形式下,非零行数小于未知数时无解,等于未知数时有唯一解。通过具体的数学例子,解释了二元和三元方程组的解结构,以及如何处理方程数与未知数不匹配的情况。
摘要由CSDN通过智能技术生成

线性方程组的结构

如何处理一些没有解或是有无数解的线性方程组?

举例 三元一次方程组
在这里插入图片描述
高斯-约旦消元法 ==>
在将第三行与第二行相加消元后 ==>
在这里插入图片描述
第三行全为0,无法找到一组xyz来满足这个线性方程组,此时这个线性方程组是无解的!

举例2 三元一次方程组
在这里插入图片描述
高斯-约旦消元法 ==>
在这里插入图片描述
在这里插入图片描述
在将第三行与第二行相加消元后 ==>
在这里插入图片描述
在此时,第三行的方程组全为0,这个方程是成立的,存在xyz满足相乘后为0,即xyz任意取值都能成立。

在这种情况下,高斯消元的过程已经结束了。
在这里插入图片描述
所以反向执行约旦消元法。
从最后一个主元开始进行操作,而此时的最后一个主元不在第三行而是第二行,第三行已经没有主元了。

==> 消去第二行主元上的所有元素
在这里插入图片描述
==> 代表的方程组在这里插入图片描述
而此时,这个解意味着,z任意取值,都能得到一组x,y,z,满足方程组 ==> 方程组有无数组解

高斯-约旦消元法本质上是将增广矩阵 变成了 阶梯型矩阵
定义阶梯型矩阵
==>
在这里插入图片描述

  1. 如果矩阵有全零行,那全零行一定位于矩阵的最底层
    在这里插入图片描述
  2. 对于其他非全零行的每一行,其中第一个非零元素(主元)随着行数的不断上升,位置逐渐向右偏
  3. 非零行的第一个元素(主元)为1
  4. 主元所在列的其他元素均为0

行最简形式
reduced row echelon form RREF

举例 复杂的行最简形式
满足行最简形式的定义
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值