方程组解的结构 分 齐次线性方程组(Ax =0)和非齐次线性方程组(Ax = b)
非齐次线性方程组(Ax = b) 解分三种
1, ,有唯一解
2,,有无穷多解
3,无解
是
的增广矩阵
齐次线性方程组(Ax =0)解分两种 ,因为他一定有解():
1,,有唯一零解
2,方程个数小于等于 未知量个数,有非零解,
并且解的个数 个
来看一道题目:求非齐次方程组的通解,
通解 = (Ax = b) 的一个特解 + (Ax = 0) 基础解析的线性组合
步骤:
1,写出增广矩阵,只进行行简化阶梯型,
2,非零行的首非零元留在左边,其余挪到右边,写出非齐次的通解方程组,指出谁是自由未知量(不在左边都是自由未知量)
3,令自由未知量均取0 ,得Ax = b 的一个特解
4,令同解方程组右边的常数项均为0,得到Ax = 0 同解方程组,指出谁是自由未知量,取个数以,
,
得Ax = 0的基础解析
5,得出特解+ (Ax = 0) 基础解析的线性组合
例如:
---化行简化阶梯型--
,
是自由未知量
令取
,特解 (Ax=b)=
解Ax = 0 同解方程组
去掉等号后的虚线,
自由未知量,取
,
,带入 得到基础解析,n1 =
,n2 =
Ax = b 的通解就是
+
+
常数项系数