高等代数(三)-线性方程组06:线性方程组解的结构

§ 6 线性方程组解的结构
在解决了线性方程组有解的判别条件之后,
我们进一步来讨论线性方程组解的结构. 在方程组的解是唯一的情况下,
当然没有什么结构问题. 在有多个解的情况下,
所谓解的结构问题就是解与解之间的关系问题.下面我们将证明,虽然在这时有无穷多个解,
但是全部的解都可以用有限多个解表示出来.
这就是本节要讨论的问题和要得到的主要结果.下面的讨论当然都是对于有解的情况说的,这一点就不再每次都说明了.
上面我们提到, n n n 元线性方程组的解是 n n n 维向量, 在解不是唯一的情况下,
作为方程组的解的这些向量之间有什么关系呢? 我们先看齐次方程组的情形.设
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0 , ⋯ ⋯ ⋯ ⋯ a n 1 x 1 + a s 2 x 2 + ⋯ + a n n x n = 0 \left\{\begin{array}{c} a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0, \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=0, \\ \cdots \cdots \cdots \cdots \\ a_{n 1} x_{1}+a_{s 2} x_{2}+\cdots+a_{n n} x_{n}=0 \end{array}\right. a11x1+a12x2++a1nxn=0,a21x1+a22x2++a2nxn=0,⋯⋯⋯⋯an1x1+as2x2++annxn=0
是一齐次线性方程组,它的解所成的集合具有下面两个重要性质:
1. 两个解的和还是方程组的解.
( k 1 , k 2 , ⋯   , k n ) \left(k_{1}, k_{2}, \cdots, k_{n}\right) (k1,k2,,kn)
( l 1 , l 2 , ⋯   , l n ) \left(l_{1}, l_{2}, \cdots, l_{n}\right) (l1,l2,,ln) 是方程组 (1) 的两个解.
这就是说,把它们代人方程组,每个方程成恒等式,即
∑ j = 1 n a i j k j = 0 , i = 1 , 2 , ⋯   , s , ∑ j = 1 n a i j l j = 0 , i = 1 , 2 , ⋯   , s . \begin{array}{l} \sum_{j=1}^{n} a_{i j} k_{j}=0, \quad i=1,2, \cdots, s, \\ \sum_{j=1}^{n} a_{i j} l_{j}=0, \quad i=1,2, \cdots, s . \end{array} j=1naijkj=0,i=1,2,,s,j=1naijlj=0,i=1,2,,s.

把两个解的和
( k 1 + l 1 , k 2 + l 2 , ⋯   , k n + l n ) \left(k_{1}+l_{1}, k_{2}+l_{2}, \cdots, k_{n}+l_{n}\right) (k1+l1,k2+l2,,kn+ln)
代人方程组,得
∑ j = 1 n a i j ( k j + l j ) = ∑ j = 1 n a i j k j + ∑ j = 1 n a i j l j = 0 + 0 = 0 , i = 1 , 2 , ⋯   , s . \sum_{j=1}^{n} a_{i j}\left(k_{j}+l_{j}\right)=\sum_{j=1}^{n} a_{i j} k_{j}+\sum_{j=1}^{n} a_{i j} l_{j}=0+0=0, \quad i=1,2, \cdots, s . j=1naij(kj+lj)=j=1naijkj+j=1naijlj=0+0=0,i=1,2,,s.
这说明 (2) 确实是方程组的解.
2. 一个解的倍数还是方程组的解.
( k 1 , k 2 , ⋯   , k n ) \left(k_{1}, k_{2}, \cdots, k_{n}\right) (k1,k2,,kn) 是 (1) 的一个解,不难看出
( c k 1 , c k 2 , ⋯   , c k n ) \left(c k_{1}, c k_{2}, \cdots, c k_{n}\right) (ck1,ck2,,ckn) 还是方程组的解,因为
∑ j = 1 n a i j ( c k j ) = c ∑ j = 1 n a i j k j = c ⋅ 0 = 0 , i = 1 , 2 , ⋯   , s . ∣ \sum_{j=1}^{n} a_{i j}\left(c k_{j}\right)=c \sum_{j=1}^{n} a_{i j} k_{j}=c \cdot 0=0, \quad i=1,2, \cdots, s . \mid j=1naij(ckj)=cj=1naijkj=c0=0,i=1,2,,s.
从几何上看, 这两个性质是清楚的. 在 n = 3 n=3 n=3 时,
每个齐次方程表示一个过原点的平面.于是方程组的解, 也就是这些平面的交,
如果不只是原点的话, 就是一条过原点的直线或一个过原点的平面.
以原点为起点, 而端点在这样的直线或平面上的向量显然具有上述的性质.
对于齐次线性方程组, 综合以上两点即得, 解的线性组合还是方程组的解.
这个性质说明了, 如果方程组有几个解,
那么这些解的所有可能的线性组合就给出了很多的解. 基于这个事实, 我们要问:
齐次线性方程组的全部解是否能够通过它的有限的几个解的线性组合给出来?
回答是肯定的.为此,我们引入下面的定义.
定义 18 齐次线性方程组 (1) 的一组解
η 1 , η 2 , ⋯   , η \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \cdots, \boldsymbol{\eta} η1,η2,,η,
称为 (1) 的一个基础解系,如果

  1. (1)的任一个解都能表成
    η 1 , η 2 , ⋯   , η 1 \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \cdots, \boldsymbol{\eta}_{1} η1,η2,,η1
    的线性组合;

η 1 , η 2 , ⋯   , η \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \cdots, \boldsymbol{\eta} η1,η2,,η,
线性无关.
应该注意, 定义中的条件 2) 是为了保证基础解系中没有多余的解. 事实上, 如果
η 1 , η 2 , ⋯   , η \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \cdots, \boldsymbol{\eta} η1,η2,,η,
线性相关, 也就是其中有一个可以表成其他的解的线性组合, 譬如说,
η \boldsymbol{\eta} η,可以表成
η 1 , η 2 , ⋯   , η 1 − 1 \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \cdots, \boldsymbol{\eta}_

  • 20
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值