【线性代数(12)】线性方程组、方程组解的结构


手动反爬虫: 原博地址

 知识梳理不易,请尊重劳动成果,文章仅发布在CSDN网站上,在其他网站看到该博文均属于未经作者授权的恶意爬取信息

如若转载,请标明出处,谢谢!

1 线性方程组

最熟悉的鸡兔同笼的问题,假使鸡兔共八只,腿共20条,请问有多少鸡和兔子?

古人思路:
1)抬脚法:兔子抬起两只脚,那么鸡兔共16条腿,剩下4腿就是兔子的,所以兔子2只,鸡6只
2)落脚法:假使鸡有四条腿,都落下来,鸡兔共32条腿,多的12条腿就是鸡的,所以鸡6只,兔子2只

如果使用现代的方程组的思路就是:设鸡有 x x x只,兔子 y y y只,方程组为: { x + y = 8 2 x + 4 y = 20 ⇒ { x = 6 y = 2 \begin{cases} x+y =8 \\ 2x + 4y=20 \end{cases} \Rightarrow \begin{cases} x=6 \\ y=2 \end{cases} {x+y=82x+4y=20{x=6y=2

方程的运算(消元法)基本步骤:
1)交换两方程
2)用非零数乘其方程
3)某方程的 l l l倍加到另一方程
可以发现消元法解方程就对应着三种初等行变换,因此上面的方程组形式就可以简化一下使用矩阵进行表示,比如计算过程如下
( 1 1 8 2 4 20 ) ⇒ ( 1 1 8 0 1 2 ) ⇒ ( 1 0 6 0 1 2 ) \left(\begin{matrix} 1&1&8\\2&4&20\end{matrix}\right)\Rightarrow \left(\begin{matrix} 1&1&8\\0&1&2\end{matrix}\right)\Rightarrow \left(\begin{matrix} 1&0&6\\0&1&2\end{matrix}\right) (1214820)(101182)(100162)

2 方程组有解的判定

2.1 方程组的向量和矩阵表示

假使方程组如下,可以转化为向量的表示形式
{ x 1 + x 2 + x 3 = 1 x 1 − x 2 − x 3 = − 3 2 x 1 + 9 x 2 + 10 x 3 = 11 ⇒ x 1 ( 1 1 2 ) + x 2 ( 1 − 1 9 ) + x 3 ( 1 − 1 10 ) = ( 1 − 3 11 ) ⇒ x 1 α 1 + x 2 α 2 + x 3 α 3 = β \begin{cases} x_{1}+x_{2}+x_{3} =1 \\ x_{1}-x_{2}-x_{3} =-3\\ 2x_{1}+9x_{2}+10x_{3} = 11 \end{cases} \Rightarrow x_{1}\left(\begin{matrix} 1\\1\\2\end{matrix}\right)+x_{2}\left(\begin{matrix} 1\\-1\\9\end{matrix}\right)+x_{3}\left(\begin{matrix} 1\\-1\\10\end{matrix}\right) = \left(\begin{matrix} 1\\-3\\11\end{matrix}\right)\Rightarrow x_{1}\alpha_{1}+x_{2}\alpha_{2}+x_{3}\alpha_{3}=\beta x1+x2+x3=1x1x2x3=32x1+9x2+10x3=11x1112+x2119+x31110=1311x1α1+x2α2+x3α3=β矩阵表示形式:系数矩阵就为方程组变量的所有系数构成的矩阵,记作 A A A,增广矩阵就是在系数矩阵的基础上添加常数项,记作 A ‾ \overline{\text{A}} A
A = ( 1 1 1 1 − 1 − 1 2 9 10 )    A ‾ = ( 1 1 1 1 1 − 1 − 1 − 3 2 9 10 11 ) A = \left(\begin{matrix} 1&1&1\\1&-1&-1\\2&9&10\end{matrix}\right)\space \space \overline{\text{A}}= \left(\begin{matrix} 1&1&1&1\\1&-1&-1&-3\\2&9&10&11\end{matrix}\right) A=1121191110  A=11211911101311使用消元法进行方程组的求解,实际上就是对增广矩阵进行初等变换

2.2 方程组解的判定

假使最后化简的增广矩阵的式子如下
( 1 0 0 1 0 1 0 2 0 0 1 3 ) ⇒ { x 1 = 1 x 2 = 2 x 3 = 3 ⇒ 方 程 组 有 唯 一 解 , r ( A ) = r ( A ‾ ) = 3 = 未 知 数 个 数 \left(\begin{matrix} 1&0&0&1\\0&1&0&2\\0&0&1&3\end{matrix}\right) \Rightarrow \begin{cases} x_{1}=1 \\ x_{2} =2\\ x_{3} = 3 \end{cases} \Rightarrow 方程组有唯一解,r(A)=r(\overline{\text{A}})=3=未知数个数 100010001123x1=1x2=2x3=3r(A)=r(A)=3=
( 1 0 1 5 0 1 1 9 0 0 0 0 ) ⇒ { x 1 = 5 − x 3 x 2 = 9 − x 3 ⇒ 方 程 组 无 穷 多 解 , r ( A ) = r ( A ‾ ) = 2 < 未 知 数 个 数 \left(\begin{matrix} 1&0&1&5\\0&1&1&9\\0&0&0&0\end{matrix}\right) \Rightarrow \begin{cases} x_{1}=5-x_{3} \\ x_{2} =9-x_{3}\\ \end{cases} \Rightarrow 方程组无穷多解,r(A)=r(\overline{\text{A}})=2<未知数个数 100010110590{x1=5x3x2=9x3r(A)=r(A)=2<
( 1 0 1 5 0 1 1 9 0 0 0 1 ) ⇒ { x 1 = 5 − x 3 x 2 = 9 − x 3 0 = 1 ⇒ 方 程 组 无 解 , r ( A ) < r ( A ‾ ) \left(\begin{matrix} 1&0&1&5\\0&1&1&9\\0&0&0&1\end{matrix}\right) \Rightarrow \begin{cases} x_{1}=5-x_{3} \\ x_{2} =9-x_{3}\\ 0 =1 \end{cases} \Rightarrow 方程组无解,r(A)<r(\overline{\text{A}}) 100010110591x1=5x3x2=9x30=1r(A)<r(A)

结论:
1)当 r ( A ) = r ( A ‾ ) r(A)=r(\overline{\text{A}}) r(A)=r(A),方程组有解 { r ( A ) = r ( A ‾ ) = n , 唯 一 解 r ( A ) = r ( A ‾ ) < n , 无 穷 多 解 \begin{cases} r(A)=r(\overline{\text{A}})=n,唯一解\\ r(A)=r(\overline{\text{A}})<n,无穷多解\\ \end{cases} {r(A)=r(A)=n,r(A)=r(A)<n,
2)当 r ( A ) ≠ r ( A ‾ ) r(A)\not=r(\overline{\text{A}}) r(A)=r(A),方程组无解

★★★★★关于方程组中的 m , n m,n m,n,其中 m m m是指方程的个数, n n n是指未知数的个数

解题步骤:

1)写出增广矩阵 A ‾ \overline{\text{A}} A

2)只做初等行变换,化为阶梯型矩阵

3)对比 r ( A ) , r ( A ‾ ) r(A),r(\overline{\text{A}}) r(A),r(A)值,阶梯型中虚线左边非零行行数与右边的非零行行数的对比

4)化为行最简阶梯型,不管零行,非零行的首非零元留在左边,其余变量挪到右边得到一般解(要变号)

例题,经过转化后的增广矩阵和求解过程如下
A ‾ = ( 1 2 3 1 2 0 3 7 − 1 3 0 0 0 0 0 0 0 0 0 0 ) ⇒ ( 1 0 − 5 3 5 3 0 0 1 7 3 1 3 1 0 0 0 0 0 0 0 0 0 0 ) ⇒ { x 1 = 5 3 x 3 − 5 3 x 4 x 2 = 1 − 7 3 x 3 + 1 3 x 4 \overline{\text{A}} = \left(\begin{matrix} 1&2&3&1&2\\0&3&7&-1&3\\0&0&0&0&0\\0&0&0&0&0\end{matrix}\right) \Rightarrow \left(\begin{matrix} 1&0&-\frac{5}{3}&\frac{5}{3}&0\\0&1&\frac{7}{3}&\frac{1}{3}&1\\0&0&0&0&0\\0&0&0&0&0\end{matrix}\right)\Rightarrow \begin{cases} x_{1} = \frac{5}{3}x_{3}-\frac{5}{3}x_{4}\\ x_{2} = 1-\frac{7}{3}x_{3} +\frac{1}{3}x_{4}\\ \end{cases} A=10002300370011002300100001003537003531000100{x1=35x335x4x2=137x3+31x4

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lys_828

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值