【机器学习】数据拟合-最小二乘法(Least Squares Method)

最小二乘法(Least Squares Method)

最小二乘法是一种广泛使用的数据拟合方法,用于在统计学和数学中找到最佳拟合曲线或模型,使得观测数据点与模型预测值之间的误差平方和最小化。以下是详细介绍:


基本概念

  • 假设有一组观测数据点 (x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n),希望找到一个模型 y = f(x),使得模型预测值 f(x_i) 与实际观测值 y_i 的误差最小。
  • 定义误差为: e_i = y_i - f(x_i)
  • 最小二乘法的目标是最小化误差平方和:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值