均匀带电直线外一点的场强

真空中有均匀带电直线,长为 L L L,总电量为 q q q
线外有一点 P P P,离开直线的垂直距离为 a a a P P P点和直线两端连线的夹角分别为 θ 1 \theta_1 θ1 θ 2 \theta_2 θ2 。求 P P P点的场强。
(设电荷线密度为 λ \lambda λ

--------------------------------------------------------------------------------------------------------在这里插入图片描述
取一电荷元: d q = λ d x dq=\lambda dx dq=λdx

d E x = λ   d x 4 π ε o r 2 cos ⁡ θ (1) {\bf{d}}E_x = \frac{{\lambda \,{\bf{d}}x}}{{4\pi {\varepsilon _o}{r^2}}}\cos\theta\tag{1} dEx=4πεor2λdxcosθ(1)
d E y = λ   d x 4 π ε o r 2 sin ⁡ θ (2) {\bf{d}}E_y = \frac{{\lambda \,{\bf{d}}x}}{{4\pi {\varepsilon _o}{r^2}}}\sin\theta\tag{2} dEy=4πεor2λdxsinθ(2)

  • 我们首先处理式子(1):
    E x = ∫ θ 1 θ 2 λ   d x 4 π ε o r 2 cos ⁡ θ = ∫ θ 1 θ 2 λ   cos ⁡ θ 4 π ε o r 2 d x (1.1) \begin{aligned} E_x&=\int_{\theta_1}^{\theta_2}\frac{{\lambda \,{\bf{d}}x}}{{4\pi {\varepsilon _o}{r^2}}}\cos\theta\\ &=\int_{\theta_1}^{\theta_2}\frac{\lambda \,\cos\theta}{4\pi {\varepsilon _o}{r^2}}\bf{d}x\\ \end{aligned}\tag{1.1} Ex=θ1θ24πεor2λdxcosθ=θ1θ24πεor2λcosθdx(1.1)
    其中 x = − a tan ⁡ θ x = -\frac{a}{\tan\theta} x=tanθa, r = a s i n θ r=\frac{a}{sin\theta} r=sinθa

则(1.1)可化为:
E x = ∫ θ 1 θ 2 λ   cos ⁡ θ 4 π ε o r 2 d x = ∫ θ 1 θ 2 λ cos ⁡ θ 4 π ε 0 a 2 sin ⁡ 2 θ a sin ⁡ 2 θ d θ = ∫ θ 1 θ 2 λ cos ⁡ θ 4 π ε 0 a d θ = λ 4 π ε 0 a ( sin ⁡ θ 2 − sin ⁡ θ 1 ) (1.2) \begin{aligned} E_x &=\int_{\theta_1}^{\theta_2}\frac{\lambda \,\cos\theta}{4\pi {\varepsilon _o}{r^2}}\bf{d}x\\ &=\int_{\theta_1}^{\theta_2}\frac{\lambda\cos\theta}{4\pi\varepsilon_0\frac{a^2}{\sin^2\theta}}\frac{a}{\sin^2\theta}d\theta\\ &=\int_{\theta_1}^{\theta_2}\frac{\lambda\cos\theta}{4\pi\varepsilon_0a}d\theta\\ &=\frac{\lambda}{4\pi\varepsilon_0a}(\sin\theta_2-\sin\theta_1)\tag{1.2} \end{aligned} Ex=θ1θ24πεor2λcosθdx=θ1θ24πε0sin2θa2λcosθsin2θadθ=θ1θ24πε0aλcosθdθ=4πε0aλ(sinθ2sinθ1)(1.2)

  • 现在处理式子(2):
    E y = ∫ θ 1 θ 2 λ   d x 4 π ε o r 2 sin ⁡ θ = ∫ θ 1 θ 2 λ   sin ⁡ θ 4 π ε o r 2 d x (2.1) \begin{aligned} E_y&=\int_{\theta_1}^{\theta_2}\frac{{\lambda \,{\bf{d}}x}}{{4\pi {\varepsilon _o}{r^2}}}\sin\theta\\ &=\int_{\theta_1}^{\theta_2}\frac{\lambda \,\sin\theta}{4\pi {\varepsilon _o}{r^2}}\bf{d}x\\ \end{aligned}\tag{2.1} Ey=θ1θ24πεor2λdxsinθ=θ1θ24πεor2λsinθdx(2.1)
    其中 x = − a tan ⁡ θ x = -\frac{a}{\tan\theta} x=tanθa, r = a s i n θ r=\frac{a}{sin\theta} r=sinθa

则(1.1)可化为:
E y = ∫ θ 1 θ 2 λ   sin ⁡ θ 4 π ε o r 2 d x = ∫ θ 1 θ 2 λ sin ⁡ θ 4 π ε 0 a 2 sin ⁡ 2 θ a sin ⁡ 2 θ d θ = ∫ θ 1 θ 2 λ sin ⁡ θ 4 π ε 0 a d θ = λ 4 π ε 0 a ( cos ⁡ θ 1 − cos ⁡ θ 2 ) (2.2) \begin{aligned} E_y &=\int_{\theta_1}^{\theta_2}\frac{\lambda \,\sin\theta}{4\pi {\varepsilon _o}{r^2}}\bf{d}x\\ &=\int_{\theta_1}^{\theta_2}\frac{\lambda\sin\theta}{4\pi\varepsilon_0\frac{a^2}{\sin^2\theta}}\frac{a}{\sin^2\theta}d\theta\\ &=\int_{\theta_1}^{\theta_2}\frac{\lambda\sin\theta}{4\pi\varepsilon_0a}d\theta\\ &=\frac{\lambda}{4\pi\varepsilon_0a}(\cos\theta_1-\cos\theta_2)\tag{2.2} \end{aligned} Ey=θ1θ24πεor2λsinθdx=θ1θ24πε0sin2θa2λsinθsin2θadθ=θ1θ24πε0aλsinθdθ=4πε0aλ(cosθ1cosθ2)(2.2)
特别的,当通电导线无限长时, θ 1 = 0 \theta_1=0 θ1=0, θ 2 = π \theta_2=\pi θ2=π
E x = 0 E y = λ 2 π ε 0 a \begin{aligned} E_x &=0\\ E_y&=\frac{\lambda}{2\pi\varepsilon_0a} \end{aligned} ExEy=0=2πε0aλ

  • 18
    点赞
  • 47
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
下面是用MATLAB实现均匀带电球壳场强及电势分布可视化的代码: ```matlab % 定义常量 epsilon0 = 8.85e-12; % 真空介电常数 k = 1 / (4 * pi * epsilon0); % 定义球壳半径和电荷密度 R = 1; % 球壳半径 sigma = 1e-9; % 电荷密度 % 定义网格 n = 50; [x,y,z] = meshgrid(linspace(-R,R,n),linspace(-R,R,n),linspace(-R,R,n)); r = sqrt(x.^2 + y.^2 + z.^2); % 计算电势和场强 V = zeros(n,n,n); Ex = zeros(n,n,n); Ey = zeros(n,n,n); Ez = zeros(n,n,n); for i = 1:n for j = 1:n for k = 1:n if r(i,j,k) ~= 0 && r(i,j,k) <= R V(i,j,k) = k * sigma * R^2 / (2 * epsilon0 * r(i,j,k)) * (3 - r(i,j,k)^2 / R^2); Ex(i,j,k) = k * sigma * R^2 * x(i,j,k) / (2 * epsilon0 * r(i,j,k)^3) * (3 * r(i,j,k)^2 / R^2 - 1); Ey(i,j,k) = k * sigma * R^2 * y(i,j,k) / (2 * epsilon0 * r(i,j,k)^3) * (3 * r(i,j,k)^2 / R^2 - 1); Ez(i,j,k) = k * sigma * R^2 * z(i,j,k) / (2 * epsilon0 * r(i,j,k)^3) * (3 * r(i,j,k)^2 / R^2 - 1); elseif r(i,j,k) > R V(i,j,k) = k * sigma * R^2 / (2 * epsilon0 * r(i,j,k)); Ex(i,j,k) = k * sigma * R^2 * x(i,j,k) / (2 * epsilon0 * r(i,j,k)^3); Ey(i,j,k) = k * sigma * R^2 * y(i,j,k) / (2 * epsilon0 * r(i,j,k)^3); Ez(i,j,k) = k * sigma * R^2 * z(i,j,k) / (2 * epsilon0 * r(i,j,k)^3); end end end end % 绘制电势的等值面图 figure; p = patch(isosurface(x,y,z,V,0)); set(p,'FaceColor','red','EdgeColor','none'); daspect([1 1 1]); view(3); camlight; lighting gouraud; % 绘制场强的矢量图 figure; quiver3(x,y,z,Ex,Ey,Ez); daspect([1 1 1]); view(3); camlight; lighting gouraud; ``` 这段代码会生成两个三维图形,一个是电势的等值面图,另一个是场强的矢量图。你可以根据需要,调整网格大小、电荷密度等参数,来探索不同情况下的场强和电势分布。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值