静电场
电场强度
库仑定律
F = 1 4 π ε 0 q 1 q 2 r 2 e r {\bf F}=\frac{1}{4\pi\varepsilon_0}\frac{q_1q_2}{r^2}{\bf e}_r F=4πε01r2q1q2er
电场强度计算式
E = F q 0 E=\frac{F}{q_0} E=q0F
点电荷的电场强度
E = F q 0 = 1 4 π ε 0 Q r 2 e r E = \frac{F}{q_0}=\frac{1}{4\pi\varepsilon_0}\frac{Q}{r^2}e_r E=q0F=4πε01r2Qer
电场强度叠加原理
点电荷系
E = ∑ i = 1 n E i = 1 4 π ε 0 ∑ i = 1 n Q i r i 2 e i E = \sum_{i=1}^{n}E_i=\frac{1}{4\pi\varepsilon_0}\sum_{i=1}^n\frac{Q_i}{r_i^2}e_i E=i=1∑nEi=4πε01i=1∑nri2Qiei
带电体
E = ∫ v 1 4 π ε 0 ρ e r r 2 d S E=\int_v\frac{1}{4\pi\varepsilon_0}\frac{\rho e_r}{r^2}dS E=∫v4πε01r2ρerdS
线带电体
E = ∫ l 1 4 π ε 0 λ e r r 2 d l E=\int_l\frac{1}{4\pi\varepsilon_0}\frac{\lambda e_r}{r^2}dl E=∫l4πε01r2λerdl
面带电体
E = ∫ s 1 4 π ε 0 σ e r r 2 d S E = \int_s\frac{1}{4\pi\varepsilon_0}\frac{\sigma e_r}{r^2}dS E=∫s4πε01r2σerdS
电偶极子的电场强度
从 − q -q −q 指向 + q +q +q 的矢量 r 0 r_0 r0 为电偶极子的轴, q r 0 qr_0 qr0 称为电偶极子的电偶极矩(简称电距),用符号 p p p 表示,有 p = q r 0 p=qr_0 p=qr0
电偶极子轴线的延长线上任意点A处的电场强度
E = 1 4 π ε 0 2 p x 3 E=\frac{1}{4\pi\varepsilon_0}\frac{2p}{x^3} E=4πε01x32p
电偶极子中垂线上任意点B处的电场强度
E = − 1 4 π ε 0 p y 3 E=-\frac{1}{4\pi\varepsilon_0}\frac{p}{y^3} E=−4πε01y3p
通量
通过面积元 dS 的电场线 dN 与该点的 E 的关系
d N d s = E \frac{dN}{ds}=E dsdN=E
电场强度通量 Φ e \Phi_e Φe
Φ e = ∫ S d Φ e = ∫ S E cos θ d S = ∫ S E ⋅ d S \Phi_e=\int_S d\Phi_e=\int_SE\cos\theta dS=\int_SE\cdot dS Φe=∫SdΦe=∫SEcosθdS=∫SE⋅dS
高斯定理
Φ
e
=
∮
S
E
⋅
d
S
=
q
ε
0
\Phi_e=\oint_SE\cdot dS=\frac{q}{\varepsilon_0}
Φe=∮SE⋅dS=ε0q
即:通过球面的电场强度通量等于球面包围的电荷
q
q
q 除以真空电容率
静电场中,电场强度 E 沿任意闭合路径的线积分为零
∮ l E ⋅ d l = 0 \oint_lE\cdot dl=0 ∮lE⋅dl=0
能量
电势能与做功的关系
W
A
B
=
E
p
A
−
E
p
B
=
−
(
E
p
B
−
E
p
A
)
W_{AB}=E_{pA}-E_{p_B}=-(E_{pB}-E_{pA})
WAB=EpA−EpB=−(EpB−EpA)
q
0
∫
A
B
E
⋅
d
l
=
E
p
A
−
E
p
B
=
−
(
E
p
B
−
E
p
A
)
q_0\int_{AB}E\cdot dl=E_{pA}-E_{p_B}=-(E_{pB}-E_{pA})
q0∫ABE⋅dl=EpA−EpB=−(EpB−EpA)
电荷
q
q
q 在电场处某点的电势能,就等于把它从该点移到零势能处静电场力做的功
电势与做功的关系
V
A
=
∫
A
B
E
⋅
d
l
+
V
B
V_A=\int_{AB}E\cdot dl+V_B
VA=∫ABE⋅dl+VB
V
A
=
∫
a
∞
E
⋅
d
l
V_A=\int_{a\infty}E\cdot dl
VA=∫a∞E⋅dl
电场中某一点A的电势
V
A
V_A
VA ,在数值上等于把单位正试验电荷从点
A
A
A 移到无限远处时,静电场力做的功
U
A
B
=
V
A
−
V
B
=
−
(
V
B
−
V
A
)
=
∫
A
B
E
⋅
d
l
U_{AB}=V_A-V_B=-(V_B-V_A)=\int_{AB}E\cdot dl
UAB=VA−VB=−(VB−VA)=∫ABE⋅dl
W
A
B
=
q
∫
A
B
E
⋅
d
l
=
q
V
A
−
q
V
B
=
−
(
q
V
B
−
q
V
A
)
W_{AB}=q\int_{AB}E\cdot dl=qV_A-qV_B=-(qV_B-qV_A)
WAB=q∫ABE⋅dl=qVA−qVB=−(qVB−qVA)
点电荷的电势叠加原理
V = 1 4 π ε 0 ∫ d q r V=\frac{1}{4\pi\varepsilon_0}\int\frac{dq}{r} V=4πε01∫rdq
电场强度与电势
E
=
−
d
V
d
L
n
e
n
E=-\frac{dV}{dL_n}e_n
E=−dLndVen
在电场中任意一点的电场强度
E
E
E,等于该点的电势沿等势面法线方向的变化率的负值,也就是说,在电场中任一点
E
E
E 的大小,等于该点电势沿等势面法线方向的空间变化率,
E
E
E 的方向与法线方向相反