第五章 静电场

电场强度

库仑定律

F = 1 4 π ε 0 q 1 q 2 r 2 e r {\bf F}=\frac{1}{4\pi\varepsilon_0}\frac{q_1q_2}{r^2}{\bf e}_r F=4πε01r2q1q2er

电场强度计算式

E = F q 0 E=\frac{F}{q_0} E=q0F

点电荷的电场强度

E = F q 0 = 1 4 π ε 0 Q r 2 e r E = \frac{F}{q_0}=\frac{1}{4\pi\varepsilon_0}\frac{Q}{r^2}e_r E=q0F=4πε01r2Qer

电场强度叠加原理

点电荷系

E = ∑ i = 1 n E i = 1 4 π ε 0 ∑ i = 1 n Q i r i 2 e i E = \sum_{i=1}^{n}E_i=\frac{1}{4\pi\varepsilon_0}\sum_{i=1}^n\frac{Q_i}{r_i^2}e_i E=i=1nEi=4πε01i=1nri2Qiei

带电体

E = ∫ v 1 4 π ε 0 ρ e r r 2 d S E=\int_v\frac{1}{4\pi\varepsilon_0}\frac{\rho e_r}{r^2}dS E=v4πε01r2ρerdS

线带电体

E = ∫ l 1 4 π ε 0 λ e r r 2 d l E=\int_l\frac{1}{4\pi\varepsilon_0}\frac{\lambda e_r}{r^2}dl E=l4πε01r2λerdl

面带电体

E = ∫ s 1 4 π ε 0 σ e r r 2 d S E = \int_s\frac{1}{4\pi\varepsilon_0}\frac{\sigma e_r}{r^2}dS E=s4πε01r2σerdS

电偶极子的电场强度

− q -q q 指向 + q +q +q 的矢量 r 0 r_0 r0 为电偶极子的轴, q r 0 qr_0 qr0 称为电偶极子的电偶极矩(简称电距),用符号 p p p 表示,有 p = q r 0 p=qr_0 p=qr0

电偶极子轴线的延长线上任意点A处的电场强度

E = 1 4 π ε 0 2 p x 3 E=\frac{1}{4\pi\varepsilon_0}\frac{2p}{x^3} E=4πε01x32p

电偶极子中垂线上任意点B处的电场强度

E = − 1 4 π ε 0 p y 3 E=-\frac{1}{4\pi\varepsilon_0}\frac{p}{y^3} E=4πε01y3p

通量

通过面积元 dS 的电场线 dN 与该点的 E 的关系

d N d s = E \frac{dN}{ds}=E dsdN=E

电场强度通量 Φ e \Phi_e Φe

Φ e = ∫ S d Φ e = ∫ S E cos ⁡ θ d S = ∫ S E ⋅ d S \Phi_e=\int_S d\Phi_e=\int_SE\cos\theta dS=\int_SE\cdot dS Φe=SdΦe=SEcosθdS=SEdS

高斯定理

Φ e = ∮ S E ⋅ d S = q ε 0 \Phi_e=\oint_SE\cdot dS=\frac{q}{\varepsilon_0} Φe=SEdS=ε0q
即:通过球面的电场强度通量等于球面包围的电荷 q q q 除以真空电容率

静电场中,电场强度 E 沿任意闭合路径的线积分为零

∮ l E ⋅ d l = 0 \oint_lE\cdot dl=0 lEdl=0

能量

电势能与做功的关系

W A B = E p A − E p B = − ( E p B − E p A ) W_{AB}=E_{pA}-E_{p_B}=-(E_{pB}-E_{pA}) WAB=EpAEpB=(EpBEpA)
q 0 ∫ A B E ⋅ d l = E p A − E p B = − ( E p B − E p A ) q_0\int_{AB}E\cdot dl=E_{pA}-E_{p_B}=-(E_{pB}-E_{pA}) q0ABEdl=EpAEpB=(EpBEpA)
电荷 q q q 在电场处某点的电势能,就等于把它从该点移到零势能处静电场力做的功

电势与做功的关系

V A = ∫ A B E ⋅ d l + V B V_A=\int_{AB}E\cdot dl+V_B VA=ABEdl+VB
V A = ∫ a ∞ E ⋅ d l V_A=\int_{a\infty}E\cdot dl VA=aEdl
电场中某一点A的电势 V A V_A VA ,在数值上等于把单位正试验电荷从点 A A A 移到无限远处时,静电场力做的功
U A B = V A − V B = − ( V B − V A ) = ∫ A B E ⋅ d l U_{AB}=V_A-V_B=-(V_B-V_A)=\int_{AB}E\cdot dl UAB=VAVB=(VBVA)=ABEdl
W A B = q ∫ A B E ⋅ d l = q V A − q V B = − ( q V B − q V A ) W_{AB}=q\int_{AB}E\cdot dl=qV_A-qV_B=-(qV_B-qV_A) WAB=qABEdl=qVAqVB=(qVBqVA)

点电荷的电势叠加原理

V = 1 4 π ε 0 ∫ d q r V=\frac{1}{4\pi\varepsilon_0}\int\frac{dq}{r} V=4πε01rdq

电场强度与电势

E = − d V d L n e n E=-\frac{dV}{dL_n}e_n E=dLndVen
在电场中任意一点的电场强度 E E E,等于该点的电势沿等势面法线方向的变化率的负值,也就是说,在电场中任一点 E E E 的大小,等于该点电势沿等势面法线方向的空间变化率, E E E 的方向与法线方向相反

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值