必要条件
函数在区间 I I I 上有界
充要条件
设 f f f 在 I I I 上的有界函数,则下列条件等价:
- f f f 在 I I I 上 Riemann 可积
- f f f 在 I I I 上的上积分和下积分相等
- lim ∣ ∣ x ∣ ∣ → 0 ∑ i , j ω i j v ( I i j ) = 0 \lim_{||x||\to0}\sum_{i,j}\omega_{ij}v(I_{ij})=0 lim∣∣x∣∣→0∑i,jωijv(Iij)=0
- 任给
ε
>
0
\varepsilon>0
ε>0, 存在
I
I
I 的某个分割
π
\pi
π 使得
S ( π ) − s ( π ) = ∑ i j ω i j v ( I i j ) < ε S(\pi)-s(\pi)=\sum_{ij}\omega_{ij}v(I_{ij})<\varepsilon S(π)−s(π)=ij∑ωijv(Iij)<ε - 任意
ε
,
η
>
0
\varepsilon,\eta>0
ε,η>0,存在划分
π
\pi
π,使得:
∑ ω i j > η v ( I i j ) < ε \sum_{\omega_{ij}>\eta}v(I_{ij})<\varepsilon ωij>η∑v(Iij)<ε - (lebesgue). 矩形 I I I 上的有界函数 f f f 是 Riemann 可积的当且仅当 f f f 的间断点集 D f D_f Df 为零测集
- 若 f f f 在 I I I 上可积,而 J ⊂ I J\subset I J⊂I 为子长方形区域,则 f f f 在 J J J 上可积
- 若矩形区域 I I I 可被有限多矩形区域 { J k } k = 1 m \{J_k\}_{k=1}^m {Jk}k=1m 覆盖,且 f f f 在每个 J k J_k Jk 上都可积,则 f f f 在 I I I 上可积