数学分析:函数的可积条件

函数的可积条件

函数可积的必要条件

\quad 在给出函数可积的充要条件之前,先来看函数可积的一个必要条件。

定理 1(可积的必要条件):若函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上可积,则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上必定有界。

证明:反证法。
\quad 假定函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上无界,则不论对 [ a , b ] [a,b] [a,b] 作何种划分,总存在 [ a , b ] [a,b] [a,b] 的某个小区间 [ x k − 1 , x k ] [x_{k-1},x_k] [xk1,xk] 1 ≤ k ≤ n 1 \le k \le n 1kn) ,使得 f ( x ) f(x) f(x) [ x k − 1 , x k ] [x_{k-1},x_k] [xk1,xk] 上无界。
\quad i ≠ k i \ne k i=k 的各个小区间 [ x i − 1 , x i ] [x_{i-1},x_{i}] [xi1,xi] 上,任取一点 ξ i \xi_i ξi,并记
G = ∣ ∑ i ≠ k f ( ξ i ) ⋅ Δ x i ∣ , G=\left|\sum_{i \ne k}f(\xi_i)\cdot \Delta x_i\right|, G=i=kf(ξi)Δxi,
由于 f ( x ) f(x) f(x) [ x k − 1 , x k ] [x_{k-1},x_k] [xk1,xk] 上无界,因此对于任意给定的 M > 0 M>0 M>0,存在点 ξ k ∈ [ x k − 1 , x k ] \xi_k \in[x_{k-1},x_k] ξk[xk1,xk],使得
∣ f ( ξ k ) ∣ > G + M Δ x k . \left|f(\xi_k)\right|>\frac{G+M}{\Delta x_k}. f(ξk)>ΔxkG+M.
\quad 利用三角不等式,可得
∣ f ( ξ k ) ⋅ Δ x k ∣ − ∣ ∑ i ≠ k f ( ξ i ) ⋅ Δ x i ∣ ≤ ∣ ∑ i = 1 n f ( ξ i ) Δ x i ∣ \left|f(\xi_k) \cdot \Delta x_k\right|-\left|\sum_{i \ne k}f(\xi_i)\cdot \Delta x_i\right|\le \left|\sum_{i=1}^{n}f(\xi_i)\Delta x_{i}\right| f(ξk)Δxki=kf(ξi)Δxii=1nf(ξi)Δxi
从而
∣ ∑ i = 1 n f ( ξ i ) Δ x i ∣ ≥ G + M Δ x k ⋅ Δ x k − G = M . \left|\sum_{i=1}^{n}f(\xi_i)\Delta x_{i}\right| \ge \frac{G+M}{\Delta x_k} \cdot \Delta x_k-G=M. i=1nf(ξi)ΔxiΔxkG+MΔxkG=M.
也就是说,无论 M M M 取得有多大,总存在某个划分 P P P 和 点集 { ξ i ∣ i = 1 , 2 , ⋯   , n } \{\xi_i|i=1,2,\cdots,n\} {ξii=1,2,,n} 的某种取法,使得积分和大于 M M M,从而与 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上可积产生矛盾。因此, f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上必定有界。

证毕

思考:既然区间 [ a , b ] [a,b] [a,b] 上的可积函数一定有界,那么,有界函数一定在区间 [ a , b ] [a,b] [a,b] 上可积吗?
答:不一定。

【例题】:Dirichlet 函数
D ( x ) = { 1 , x 为有理数 , 0 , x 为无理数 D(x)= \begin{cases} 1,\quad x\text{为有理数}, \\ 0,\quad x \text{为无理数} \end{cases} D(x)={1,x为有理数,0,x为无理数
在区间 [ 0 , 1 ] [0,1] [0,1] 上有界,但不可积。

函数可积的充要条件

\quad 既然,区间 [ a , b ] [a,b] [a,b] 上的可积函数都是有界的,而有界的函数又不一定可积,那么什么情况下,区间 [ a , b ] [a,b] [a,b] 上的有界函数可积呢?

\quad 下面来讨论函数可积的充要条件。

Darboux 和

\quad 设函数 f ( x ) f(x) f(x) 是区间 [ a , b ] [a,b] [a,b] 上的有界函数。由确界存在定理知, f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上必有上、下确界。记:
M = sup ⁡ x ∈ [ a , b ] f ( x ) , m = sup ⁡ x ∈ [ a , b ] f ( x ) , M=\underset{x \in [a,b]}{\sup} f(x),\quad m= \underset{x \in [a,b]}{\sup}f(x), M=x[a,b]supf(x),m=x[a,b]supf(x)

m ≤ f ( x ) ≤ M , x ∈ [ a , b ] . m \le f(x) \le M,\quad x \in [a,b]. mf(x)M,x[a,b].

\quad [ a , b ] [a,b] [a,b] 上任意取分点 { x i } i = 0 n \{x_i\}_{i=0}^{n} {xi}i=0n,作成一种划分
P : a = x 0 < x 1 < x 2 < ⋯ < x n = b , P:a=x_0<x_1<x_2<\cdots<x_n=b, P:a=x0<x1<x2<<xn=b,
并任意取点 ξ ∈ [ x i − 1 , x i ] \xi \in [x_{i-1},x_i] ξ[xi1,xi] i = 1 , 2 , ⋯   , n i=1,2,\cdots,n i=1,2,,n。由于 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上有界,因此 f ( x ) f(x) f(x) 在任意一个小区间 [ x i − 1 , x i ] [x_{i-1},x_i] [xi1,xi] i = 0 , 1 , ⋯   , n i=0,1,\cdots,n i=0,1,,n) 上也是有界的。由确界存在定理, f ( x ) f(x) f(x) 在每个小区间上均有上、下确界。

\quad f ( x ) f(x) f(x) 在小区间 [ x i − 1 , x i ] [x_{i-1},x_i] [xi1,xi] 上的上、下确界分别为
M i = sup ⁡ x ∈ [ x i − 1 , x i ] f ( x ) , m i = inf ⁡ x ∈ [ x i − 1 , x i ] f ( x ) , M_i=\underset{x \in [x_{i-1},x_i]}{\sup} f(x),\quad m_i=\underset{x \in [x_{i-1},x_i]}{\inf} f(x), Mi=x[xi1,xi]supf(x),mi=x[xi1,xi]inff(x),
显然,它们与点集 { ξ i ∣ i = 1 , 2 , ⋯   , n } \{\xi_i\mid i=1,2,\cdots,n\} {ξii=1,2,,n} 的取法无关,但与划分 P P P 有关。

\quad 对于确定的划分 P P P,定义和式
S ˉ ( P ) = ∑ i = 1 n M i ⋅ Δ x i , S ‾ ( P ) = ∑ i = 1 n m i ⋅ Δ x i , \bar S(P)=\sum_{i=1}^{n}M_i\cdot \Delta x_i,\quad \underline{S}(P)=\sum_{i=1}^{n}m_i\cdot \Delta x_i, Sˉ(P)=i=1nMiΔxi,S(P)=i=1nmiΔxi,
则分别称 S ˉ ( P ) \bar S(P) Sˉ(P) S ‾ ( P ) \underline {S}(P) S(P) 为相应于划分 P P PDarboux 大和(或 Darboux 上和)与 Darboux 小和(或 Darboux 下和)。

\quad Darboux 大和Darboux 小和 统称为 Darboux 和

\quad 显然,对于同一个划分 P P P,成立
S ‾ ( P ) ≤ ∑ i = 1 n f ( ξ i ) Δ x i ≤ S ˉ ( P ) . \underline{S}(P) \le \sum_{i=1}^{n}f(\xi_i)\Delta x_i \le \bar S(P). S(P)i=1nf(ξi)ΔxiSˉ(P).

\quad 为方便讨论,记 S ˉ \bar S Sˉ 是一切可能的划分所得到的 Darboux 大和 的集合, S ‾ \underline{S} S 是一切可能的划分得到的 Darboux 小和 的集合。

\quad 下面,来分析 Darboux 和 的性质,进而引出函数可积的充分必要条件。

引理 1(性质一):设 P P P [ a , b ] [a,b] [a,b] 上给定的一个划分,对于任意的点集 { ξ i ∣ i = 1 , 2 , ⋯   , n } \{\xi_i\mid i=1,2,\cdots,n\} {ξii=1,2,,n},Darboux 大和是所有积分和的上确界,Darboux 小和是所有积分和的下确界。
证明:

引理 2(性质二):若在原有划分 P P P 中加入分点形成新的划分,则 Darboux 大和不增,Darboux 小和不减。

引理 3(性质三):设 P 1 P_1 P1 P 2 P_2 P2 [ a , b ] [a,b] [a,b] 的任意两个划分,若将 P 1 P_1 P1 P 2 P_2 P2 的对应分点合并,形成一个新的划分 P P P,则
S ˉ ( P ) ≤ S ˉ ( P 1 ) , S ˉ ( P ) ≤ S ˉ ( P 2 ) , S ‾ ( P ) ≥ S ‾ ( P 1 ) , S ‾ ( P ) ≥ S ‾ ( P 2 ) . \bar S(P) \le \bar S(P_1),\bar S(P) \le \bar S(P_2),\quad\underline{S}(P) \ge \underline{S}(P_1), \underline{S}(P) \ge \underline{S}(P_2). Sˉ(P)Sˉ(P1),Sˉ(P)Sˉ(P2)S(P)S(P1),S(P)S(P2).

引理 4(性质四):设 P 1 P_1 P1 P 2 P_2 P2 [ a , b ] [a,b] [a,b] 的任意两个划分,则恒有
m ( b − a ) < S ‾ ( P 1 ) ≤ S ˉ ( P 2 ) ≤ M ( b − a ) . m(b-a)<\underline{S}(P_1) \le \bar S(P_2) \le M(b-a). m(ba)<S(P1)Sˉ(P2)M(ba).


\quad 由上述讨论知, S ˉ \bar S Sˉ S ‾ \underline{S} S 都是有界集合,由确界定理,均有上、下确界。记
L = inf ⁡ { S ˉ ( P ) ∣ S ˉ ( P ) ∈ S ˉ } , l = sup ⁡ { S ‾ ( P ) ∣ S ‾ ( P ) ∈ S ‾ } . L=\inf\{\bar S(P)\mid \bar S(P) \in \bar S\},\quad l=\sup \{\underline {S}(P)\mid \underline {S}(P) \in \underline S\}. L=inf{Sˉ(P)Sˉ(P)Sˉ},l=sup{S(P)S(P)S}.
通常,称 L L L f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的 上积分,称 l l l f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的 下积分


参考文献

[1] 陈纪修,于崇华,金路著. 数学分析 上册. 第2版. 北京:高等教育出版社, 2004.06.
[2] 华东师范大学数学系编. 数学分析 上册. 第4版. 北京:高等教育出版社, 2010.07.
[3] 谢惠民,恢自求,易法槐等. 数学分析习题课讲义 上册. 北京:高等教育出版社. 2003.7.10.
[4] 常庚哲,史济怀. 数学分析教程 上册. 第3版. 合肥:中国科学技术大学出版社. 2012.8.
[5] B. A. 卓里奇. 数学分析 第一卷. 第7版. 北京:高等教育出版社.2019.2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值