题目:
现有
n
n
n 阶矩阵
A
A
A,证明:
R
(
A
n
)
=
R
(
A
n
+
1
)
R(A^n)=R(A^{n+1})
R(An)=R(An+1)
参考答案:
如果
R
(
A
)
=
0
R(A)=0
R(A)=0,显然有
R
(
A
n
)
=
R
(
A
n
+
)
R(A^n)=R(A^{n+})
R(An)=R(An+),以下讨论时均认为
R
(
A
)
>
0
R(A)>0
R(A)>0.
原命题转化为几个小命题来证明。
命题一: R ( A n ) = R ( A n + 1 ) R(A^n)=R(A^{n+1}) R(An)=R(An+1),等价于 齐次线性方程组 A n X = 0 A^nX=0 AnX=0 , A n + 1 X = 0 A^{n+1}X=0 An+1X=0 同解:
如果齐次线性方程组 A n X = 0 A^nX=0 AnX=0 与 A n + 1 X = 0 A^{n+1}X=0 An+1X=0 通解,那么根据 矩阵的秩 与 解空间维数 的关系,显然有 R ( A n ) = R ( A n + 1 ) R(A^n)=R(A^{n+1}) R(An)=R(An+1)
另一方面,显然有 A n X = 0 A^nX=0 AnX=0 的解都是 A n + 1 X = 0 A^{n+1}X=0 An+1X=0 的解。如果有 R ( A n ) = R ( A n + 1 ) R(A^n)=R(A^{n+1}) R(An)=R(An+1),那么根据 矩阵的秩 与 解空间维数 的关系,那么 A n X = 0 A^nX=0 AnX=0 与 A n + 1 X = 0 A^{n+1}X=0 An+1X=0 解空间的维数也是相同的。如果有解满足 A n + 1 X = 0 A^{n+1}X=0 An+1X=0,但不满足 A n X = 0 A^nX=0 AnX=0,那么前者解空间的维数就大于后者的维数,矛盾。
注释: A n X = 0 A^nX=0 AnX=0 的解都是 A n + 1 X = 0 A^{n+1}X=0 An+1X=0 这是在任何环境下都成立的。如果 R ( A n ) = R ( A n + 1 ) R(A^n)=R(A^{n+1}) R(An)=R(An+1),那么 A n + 1 X = 0 A^{n+1}X=0 An+1X=0 的解也都是 A n X = 0 A^nX=0 AnX=0 的解,
命题二:如果 A n X 0 = 0 A^{n}X_0=0 AnX0=0,那么 A X 0 , A 2 X 0 , ⋯ , A n X 0 AX_0,A^2X_0,\cdots,A^nX_0 AX0,A2X0,⋯,AnX0 线性无关
证明:
设
a
1
A
X
+
a
2
A
2
X
+
⋯
+
a
n
A
n
X
=
0
a_1AX+a_2A^2X+\cdots+a_nA^nX=0
a1AX+a2A2X+⋯+anAnX=0
两边同左乘 A n − 1 A^{n-1} An−1 ,得
a 1 A n X + a 2 A n + 1 X + ⋯ + a n A 2 n − 1 X = a 1 A n X = 0 a_1A^nX+a_2A^{n+1}X+\cdots+a_nA^{2n-1}X=a_1A^nX=0 a1AnX+a2An+1X+⋯+anA2n−1X=a1AnX=0
那么就有 a 1 = 0 a_1=0 a1=0,同理, a 2 = a 3 = ⋯ = a n = 0 a_2=a_3=\cdots=a_n=0 a2=a3=⋯=an=0
所以 A X , A 2 X , ⋯ , A n X AX,A^2X,\cdots,A^nX AX,A2X,⋯,AnX 线性无关。
命题三: A n X = 0 A^nX=0 AnX=0 与 A n + 1 X = 0 A^{n+1}X=0 An+1X=0 同解
一方面,显然 A n X = 0 A^nX=0 AnX=0 的解都是 A n + 1 X = 0 A^{n+1}X=0 An+1X=0 的解.
另一方面,(反证法)如果存在解 X 0 X_0 X0 使得 A n X 0 ≠ 0 A^nX_0\ne0 AnX0=0, A n + 1 X 0 = 0 A^{n+1}X_0=0 An+1X0=0,那么 A X 0 , A X 0 2 , ⋯ , A X 0 n AX_0,AX_0^2,\cdots,AX_0^n AX0,AX02,⋯,AX0n 是 A n X = 0 A^nX=0 AnX=0 的 n n n 个线性无关的解。
又因为 R ( A ) > 0 R(A)>0 R(A)>0,所以 A n X = 0 A^nX=0 AnX=0 的解空间的维数小于 n n n ,矛盾。
所以 A n X = 0 A^nX=0 AnX=0 与 A n + 1 X = 0 A^{n+1}X=0 An+1X=0 同解