每日一题/004/矩阵/矩阵问题转化为线性方程组问题

题目:
现有 n n n 阶矩阵 A A A,证明:
R ( A n ) = R ( A n + 1 ) R(A^n)=R(A^{n+1}) R(An)=R(An+1)


参考答案:
如果 R ( A ) = 0 R(A)=0 R(A)=0,显然有 R ( A n ) = R ( A n + ) R(A^n)=R(A^{n+}) R(An)=R(An+),以下讨论时均认为 R ( A ) > 0 R(A)>0 R(A)>0.
原命题转化为几个小命题来证明。

命题一: R ( A n ) = R ( A n + 1 ) R(A^n)=R(A^{n+1}) R(An)=R(An+1),等价于 齐次线性方程组 A n X = 0 A^nX=0 AnX=0 , A n + 1 X = 0 A^{n+1}X=0 An+1X=0 同解:

如果齐次线性方程组 A n X = 0 A^nX=0 AnX=0 A n + 1 X = 0 A^{n+1}X=0 An+1X=0 通解,那么根据 矩阵的秩解空间维数 的关系,显然有 R ( A n ) = R ( A n + 1 ) R(A^n)=R(A^{n+1}) R(An)=R(An+1)

另一方面,显然有 A n X = 0 A^nX=0 AnX=0 的解都是 A n + 1 X = 0 A^{n+1}X=0 An+1X=0 的解。如果有 R ( A n ) = R ( A n + 1 ) R(A^n)=R(A^{n+1}) R(An)=R(An+1),那么根据 矩阵的秩解空间维数 的关系,那么 A n X = 0 A^nX=0 AnX=0 A n + 1 X = 0 A^{n+1}X=0 An+1X=0 解空间的维数也是相同的。如果有解满足 A n + 1 X = 0 A^{n+1}X=0 An+1X=0,但不满足 A n X = 0 A^nX=0 AnX=0,那么前者解空间的维数就大于后者的维数,矛盾。

注释: A n X = 0 A^nX=0 AnX=0 的解都是 A n + 1 X = 0 A^{n+1}X=0 An+1X=0 这是在任何环境下都成立的。如果 R ( A n ) = R ( A n + 1 ) R(A^n)=R(A^{n+1}) R(An)=R(An+1),那么 A n + 1 X = 0 A^{n+1}X=0 An+1X=0 的解也都是 A n X = 0 A^nX=0 AnX=0 的解,

命题二:如果 A n X 0 = 0 A^{n}X_0=0 AnX0=0,那么 A X 0 , A 2 X 0 , ⋯   , A n X 0 AX_0,A^2X_0,\cdots,A^nX_0 AX0,A2X0,,AnX0 线性无关

证明:

a 1 A X + a 2 A 2 X + ⋯ + a n A n X = 0 a_1AX+a_2A^2X+\cdots+a_nA^nX=0 a1AX+a2A2X++anAnX=0

两边同左乘 A n − 1 A^{n-1} An1 ,得

a 1 A n X + a 2 A n + 1 X + ⋯ + a n A 2 n − 1 X = a 1 A n X = 0 a_1A^nX+a_2A^{n+1}X+\cdots+a_nA^{2n-1}X=a_1A^nX=0 a1AnX+a2An+1X++anA2n1X=a1AnX=0

那么就有 a 1 = 0 a_1=0 a1=0,同理, a 2 = a 3 = ⋯ = a n = 0 a_2=a_3=\cdots=a_n=0 a2=a3==an=0

所以 A X , A 2 X , ⋯   , A n X AX,A^2X,\cdots,A^nX AX,A2X,,AnX 线性无关。

命题三: A n X = 0 A^nX=0 AnX=0 A n + 1 X = 0 A^{n+1}X=0 An+1X=0 同解

一方面,显然 A n X = 0 A^nX=0 AnX=0 的解都是 A n + 1 X = 0 A^{n+1}X=0 An+1X=0 的解.

另一方面,(反证法)如果存在解 X 0 X_0 X0 使得 A n X 0 ≠ 0 A^nX_0\ne0 AnX0=0, A n + 1 X 0 = 0 A^{n+1}X_0=0 An+1X0=0,那么 A X 0 , A X 0 2 , ⋯   , A X 0 n AX_0,AX_0^2,\cdots,AX_0^n AX0,AX02,,AX0n A n X = 0 A^nX=0 AnX=0 n n n 个线性无关的解。

又因为 R ( A ) > 0 R(A)>0 R(A)>0,所以 A n X = 0 A^nX=0 AnX=0 的解空间的维数小于 n n n ,矛盾。

所以 A n X = 0 A^nX=0 AnX=0 A n + 1 X = 0 A^{n+1}X=0 An+1X=0 同解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值