初值的线性微分方程组求解 | 例题

问题重述

本博客旨在求解带初值的线性微分方程组问题。

x ′ = A ( t ) x + f ( t ) , x ( t 0 ) = x 0 x'= A(t)x+f(t),\quad x(t_0)=x_0 x=A(t)x+f(t),x(t0)=x0

理论证明这里就不想写了,只写一下具体怎么求解。

求解公式

x ( t ) = exp ⁡ ( A ( t − t 0 ) ) x 0 + exp ⁡ ( A t ) ∫ t 0 t exp ⁡ ( − A s ) f ( s )   d s x(t)=\exp(A(t-t_0))x_0+\exp(At)\int_{t_0}^t\exp(-As)f(s)\,{\rm d}s x(t)=exp(A(tt0))x0+exp(At)t0texp(As)f(s)ds

示例

x ′ = ( 1 0 0 2 1 − 2 3 2 1 ) x + ( 0 0 e t cos ⁡ ( 2 t ) ) , x ( 0 ) = ( 0 1 1 ) x'=\begin{pmatrix}1& 0& 0\\ 2 & 1 & -2\\ 3 & 2 & 1\end{pmatrix}x+\begin{pmatrix}0\\0\\e^t\cos(2t)\end{pmatrix},\quad x(0)=\begin{pmatrix}0\\1\\1\end{pmatrix} x=123012021x+00etcos(2t),x(0)=011

首先求解 Φ ( t ) \Phi (t) Φ(t)

A A A 的特征值和特征向量为 1 , 1 − 2 i , 1 + 2 i 1,1-2i,1+2i 1,12i,1+2i,对应的特征向量为 [ 1 , − 3 2 , 1 ] T [1,-\frac{3}{2},1]^T [1,23,1]T, [ 0 , − i , 1 ] T [0,-i,1]^T [0,i,1]T, [ 0 , i , 1 ] T [0,i,1]^T [0,i,1]T。于是

x 1 ( t ) = [ 1 − 3 2 1 ] e t x_1(t)=\begin{bmatrix}1\\-\frac{3}{2}\\1\end{bmatrix}e^t x1(t)=1231et

x ˉ 2 , 3 = [ 0 − i   1 ] e ( 1 − 2 i ) t = e t [ 0 − i e − 2 i t e − 2 i t ] = e t [ 0 − i ( cos ⁡ 2 t − i sin ⁡ 2 t ) cos ⁡ 2 t − i sin ⁡ 2 t ] = e t [ 0 − sin ⁡ 2 t cos ⁡ 2 t ] + i e t [ 0 − cos ⁡ 2 t − sin ⁡ 2 t ] \begin{aligned}\bar{x}_{2,3}&=\begin{bmatrix}0\\-i\\\ 1\end{bmatrix}e^{(1-2i)t}\\ &=e^t\begin{bmatrix}0\\-ie^{-2it}\\e^{-2it}\end{bmatrix}\\ &=e^t\begin{bmatrix}0\\ -i(\cos2t-i\sin2t)\\\cos2t-i\sin2t\end{bmatrix}\\ &=e^t\begin{bmatrix}0\\-\sin2t\\\cos2t\end{bmatrix}+ie^t\begin{bmatrix}0\\-\cos2t\\-\sin2t\end{bmatrix}\end{aligned} xˉ2,3=0i 1e(12i)t=et0ie2ite2it=et0i(cos2tisin2t)cos2tisin2t=et0sin2tcos2t+iet0cos2tsin2t

于是就能得到,

x 2 ( t ) = e t [ 0 − sin ⁡ 2 t cos ⁡ 2 t ] , , x 3 ( t ) = e t [ 0 − cos ⁡ 2 t − sin ⁡ 2 t ] x_2(t)=e^t\begin{bmatrix}0\\-\sin2t\\\cos2t\end{bmatrix},\quad,x_3(t)=e^t\begin{bmatrix}0\\-\cos2t\\-\sin2t\end{bmatrix} x2(t)=et0sin2tcos2t,,x3(t)=et0cos2tsin2t

于是 Ψ ( t ) = e t [ 1 0 0 − 3 2 − sin ⁡ 2 t − cos ⁡ 2 t 1 cos ⁡ 2 t − sin ⁡ 2 t ] \Psi(t)=e^t\begin{bmatrix}1 & 0 & 0\\ -\frac{3}{2} &-\sin2t&-\cos2t\\ 1 & \cos2t &-\sin2t\end{bmatrix} Ψ(t)=et12310sin2tcos2t0cos2tsin2t

exp ⁡ A t = Ψ ( t ) ∗ Ψ − 1 ( 0 ) = e t [ 1 0 0 − 3 2 − sin ⁡ 2 t − cos ⁡ 2 t 1 cos ⁡ 2 t − sin ⁡ 2 t ] ∗ [ 1 0 0 − 1 0 1 − 2 3 − 1 0 ] = e t [ 1 0 0 ( 2   cos ⁡ ( 2   t ) + 3   sin ⁡ ( 2   t ) − 2 ) 3 cos ⁡ 2 t − sin ⁡ 2 t ( 2   sin ⁡ ( 2   t ) − 3   cos ⁡ ( 2   t ) + 3 ) 3 sin ⁡ 2 t cos ⁡ 2 t ] \begin{aligned} \exp At&=\Psi(t)*\Psi^{-1}(0)\\ &=e^t\begin{bmatrix}1 & 0 & 0\\ -\frac{3}{2} &-\sin2t&-\cos2t\\ 1 & \cos2t &-\sin2t\end{bmatrix}*\begin{bmatrix} 1 & 0 & 0\\ -1 & 0 & 1\\ -\frac{2}{3} & -1 & 0 \end{bmatrix}\\ &= e^t\begin{bmatrix} 1 & 0 & 0\\ \frac{{\left(2\,\cos \left(2\,t\right)+3\,\sin \left(2\,t\right)-2\right)}}{3} & \cos2t & -\sin2t \\ \frac{{\left(2\,\sin \left(2\,t\right)-3\,\cos \left(2\,t\right)+3\right)}}{3} &\sin2t & \cos2t \end{bmatrix}\\ \end{aligned} expAt=Ψ(t)Ψ1(0)=et12310sin2tcos2t0cos2tsin2t1132001010=et13(2cos(2t)+3sin(2t)2)3(2sin(2t)3cos(2t)+3)0cos2tsin2t0sin2tcos2t

于是

x ( t ) = exp ⁡ ( A ( t − t 0 ) ) x 0 + exp ⁡ ( A t ) ∫ t 0 t exp ⁡ ( − A s ) f ( s )   d s = exp ⁡ ( A t ) [ 0 1 1 ] + exp ⁡ ( A t ) ∫ 0 t exp ⁡ − s t [ 0 0 e s cos ⁡ 2 s ] d s = exp ⁡ A t [ 0 1 1 ] + exp ⁡ A t ∫ 0 t [ 0 cos ⁡ 2 s sin ⁡ 2 s cos ⁡ 2 2 s ] d s = exp ⁡ A t ∗ ( [ 0 1 1 ] + [ 0 sin ⁡ ( 2   t ) 2 4 t 2 + sin ⁡ ( 4   t ) 8 ] ) = e t [ 0 cos ⁡ ( 2   t ) − sin ⁡ ( 2   t ) − t   sin ⁡ ( 2   t ) 2 cos ⁡ ( 2   t ) + 5   sin ⁡ ( 2   t ) 4 + t   cos ⁡ ( 2   t ) 2 ] \begin{aligned} x(t)&=\exp(A(t-t_0))x_0+\exp(At)\int_{t_0}^t\exp(-As)f(s)\,{\rm d}s\\ &=\exp(At)\begin{bmatrix}0\\1\\1\end{bmatrix}+\exp(At)\int_0^t\exp-st\begin{bmatrix}0\\0\\e^s\cos 2s\\ \end{bmatrix}{\rm d}s\\ &=\exp At\begin{bmatrix}0\\1\\1\end{bmatrix}+\exp At\int_0^t\begin{bmatrix}0\\\cos2s\sin2s\\\cos^22s\end{bmatrix}{\rm d}s\\ &=\exp At*\left(\begin{bmatrix}0\\1\\1\end{bmatrix}+\begin{bmatrix} 0\\ \frac{{\sin \left(2\,t\right)}^2 }{4}\\ \frac{t}{2}+\frac{\sin \left(4\,t\right)}{8} \end{bmatrix} \right)\\ &=e^t\begin{bmatrix} 0\\ \cos \left(2\,t\right)-\sin \left(2\,t\right)-\frac{t\,\sin \left(2\,t\right)}{2}\\ \cos \left(2\,t\right)+\frac{5\,\sin \left(2\,t\right)}{4}+\frac{t\,\cos \left(2\,t\right)}{2} \end{bmatrix}\end{aligned} x(t)=exp(A(tt0))x0+exp(At)t0texp(As)f(s)ds=exp(At)011+exp(At)0texpst00escos2sds=expAt011+expAt0t0cos2ssin2scos22sds=expAt011+04sin(2t)22t+8sin(4t)=et0cos(2t)sin(2t)2tsin(2t)cos(2t)+45sin(2t)+2tcos(2t)

参考资料

  1. 常微分方程:(第五章)线性微分方程组
  2. 常系数非齐次线性微分方程组的通解
  3. 微分方程笔记

我感觉应该写清楚了。。。

如果还不明白就给我留言吧,我再做补充

2022年5月5日15:59:52

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值