一阶线性微分方程的初等积分法

变量分离方程与变量变换

可分离变量的微分方程

d y d x = f ( x ) φ ( y ) (1.1) \frac{{dy}}{{dx}} = f(x)\varphi(y)\tag{1.1} dxdy=f(x)φ(y)(1.1)

其中 f ( x ) , φ ( y ) f(x),\varphi (y) f(x),φ(y)分别是x与y的已知连续函数

如果 φ ( y ) ≠ 0 {\varphi (y) \ne 0} φ(y)=0

原式可化为:
d y φ ( y ) = f ( x ) d x \frac{{dy}}{{\varphi (y)}} = f(x)dx φ(y)dy=f(x)dx
两边分别求积分,得:
∫ d y φ ( y ) = ∫ f ( x ) d x \int {\frac{{dy}}{{\varphi (y)}} = \int {f(x)dx} } φ(y)dy=f(x)dx
G ( y ) G(y) G(y) F ( x ) F(x) F(x)分别表示 1 ϕ ( y ) \frac{1}{{\phi (y)}} ϕ(y)1 f ( x ) f(x) f(x)的某一个原函数

则方程(1.1)的通解为
G ( y ) = F ( x ) + C G(y)=F(x)+C G(y)=F(x)+C
如果存在 y i {y_i} yi使得 φ ( y i ) = 0 {\varphi (y_i) = 0} φ(yi)=0,那么 y i {y_i} yi就是方程(1.1)的解

齐次方程

d y d x = g ( y x ) (1.2) \frac{{dy}}{{dx}} = g(\frac{y}{x})\tag{1.2} dxdy=g(xy)(1.2)
其中 g ( u ) g(u) g(u) u u u的连续函数

做变量变换
y x = u \frac{y}{x} = u xy=u
y = u x y=ux y=ux
将上式带入原方程,得:
x d u d x + u = g ( u ) x\frac{du}{{dx}} + u = g(u) xdxdu+u=g(u)
整理,得:
d u d x = 1 x ⋅ ( g ( u ) − u ) \frac{{du}}{{dx}} = \frac{1}{x} \cdot (g(u) - u) dxdu=x1(g(u)u)至此,问题转化为(1.1)

可化为齐次方程的类型

d y d x = a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 (1.3) \frac{{dy}}{{dx}} = \frac{{{a_1}x + {b_1}y + {c_1}}}{{{a_2}x + {b_2}y + {c_2}}} \tag{1.3} dxdy=a2x+b2y+c2a1x+b1y+c1(1.3)
其中 a i , b i , c i , i = 1 , 2 {a_i},{b_i},{c_i},i = 1,2 ai,bi,ci,i=1,2均为常数,且 c 1 , c 2 {c_1},{c_2} c1,c2不同时为零.

如果
∣ a 1 b 1 a 2 b 2 ∣ = 0 \begin{vmatrix} {{a_1}}&{{b_1}}\\ {{a_2}}&{{b_2}}\end{vmatrix} =0 a1a2b1b2=0

a 1 = k a 2 , b 1 = k b 2 {a_1} = k{a_2}, {b_1} = k{b_2} a1=ka2,b1=kb2
则原方程可化为:
d y d x = k ( a 2 x + b 2 y ) + c 1 a 2 x + b 2 y + c 2 = f ( a 2 x + b 2 y ) \frac{{dy}}{{dx}} = \frac{{k({a_2}x + {b_2}y) + {c_1}}}{{{a_2}x + {b_2}y + {c_2}}} = f({\kern 1pt} {a_2}x + {b_2}y) dxdy=a2x+b2y+c2k(a2x+b2y)+c1=f(a2x+b2y)

u = a 2 x + b 2 y u = {a_2}x + {b_2}y u=a2x+b2y
带入原方程,整理,得: d u d x = a 2 + b 2 f ( u ) \frac{{du}}{{dx}} = {a_2} + {b_2}f(u) dxdu=a2+b2f(u)
至此,问题转化为(1.1)

如果
∣ a 1 b 1 a 2 b 2 ∣ ≠ 0 \begin{vmatrix} {{a_1}}&{{b_1}}\\ {{a_2}}&{{b_2}}\end{vmatrix} \ne 0 a1a2b1b2=0
那么方程组
{ a 1 x + b 1 y + c 1 = 0 a 2 x + b 2 y + c 2 = 0 \left\{ \begin{array}{l} {a_1}x + {b_1}y + {c_1} = 0\\ {a_2}x + {b_2}y + {c_2} = 0 \end{array} \right. {a1x+b1y+c1=0a2x+b2y+c2=0
存在唯一解 ( α , β ) (\alpha ,\beta ) (α,β)
{ X = x − α Y = y − β \left\{ \begin{array}{l} X = x - \alpha \\ Y = y - \beta \end{array} \right. {X=xαY=yβ
则原方程可化为
d Y d X = d y d x = a 1 ( X + α ) + b 1 ( Y + β ) + c 1 a 2 ( X + α ) + b 2 ( Y + β ) + c 2 = a 1 X + b 1 Y + ( a 1 α + b 1 β + c 1 ) a 2 X + b 2 Y + ( a 2 α + b 2 β + c 2 ) = a 1 X + b 1 Y a 2 X + b 2 Y \begin{aligned} \frac{d Y}{d X}=\frac{d y}{d x} &=\frac{a_{1}(X+\alpha)+b_{1}(Y+\beta)+c_{1}}{a_{2}(X+\alpha)+b_{2}(Y+\beta)+c_{2}} \\ &=\frac{a_{1} X+b_{1} Y+\left(a_{1} \alpha+b_{1} \beta+c_{1}\right)}{a_{2} X+b_{2} Y+\left(a_{2} \alpha+b_{2} \beta+c_{2}\right)}\\ &=\frac{a_{1} X+b_{1} Y}{a_{2} X+b_{2} Y} \end{aligned} dXdY=dxdy=a2(X+α)+b2(Y+β)+c2a1(X+α)+b1(Y+β)+c1=a2X+b2Y+(a2α+b2β+c2)a1X+b1Y+(a1α+b1β+c1)=a2X+b2Ya1X+b1Y
至此,问题转化为(1.2)

线性方程与常数变易法

一阶线性齐次微分方程

y ′ = p ( x ) y (2.1) y' = p(x)y \tag{2.1} y=p(x)y(2.1)

该问题与问题(1.1)同理,此处不再赘述

方程的通解为:
y = c e ∫ p ( x ) d x y = c{e^{\int {p(x)dx} }} y=cep(x)dx

一阶线性非齐次微分方程

y ′ = P ( x ) y + Q ( x ) (2.2) y' = P(x)y + Q(x)\tag{2.2} y=P(x)y+Q(x)(2.2)

假设 y = c ( x ) e ∫ P ( x ) d x y = c(x){e^{\int {P(x)dx} }} y=c(x)eP(x)dx
是方程的解

将上式带入原方程,得:
c ′ ( x ) e ∫ P ( x ) d x + c ( x ) e ∫ P ( x ) d x P ( x ) = P ( x ) c ( x ) e ∫ P ( x ) d x + Q ( x ) c'(x){e^{\int {P(x)dx} }} + c(x){e^{\int {P(x)dx} }}P(x) = P(x)c(x){e^{\int {P(x)dx} }} + Q(x) c(x)eP(x)dx+c(x)eP(x)dxP(x)=P(x)c(x)eP(x)dx+Q(x)
即:
c ′ ( x ) = Q ( x ) e − ∫ P ( x ) d x c'(x) = Q(x){e^{ - \int {P(x)dx} }} c(x)=Q(x)eP(x)dx
积分,得
c ( x ) = ∫ Q ( x ) e − ∫ p ( x ) d x d x + c c(x) = \int {Q(x){e^{ - \int {p(x)dx} }}dx + c} c(x)=Q(x)ep(x)dxdx+c
c ( x ) c(x) c(x)代入原式,得方程的通解
y = e ∫ P ( x ) d x [ ∫ Q ( x ) e − ∫ P ( x ) d x d x + c ] y = {e^{\int {P(x)dx} }}[\int {Q(x){e^{ - \int {P(x)dx} }}dx + c} ] y=eP(x)dx[Q(x)eP(x)dxdx+c]
另外,我们注意到:

非齐次线性方程的通解等于其对应齐次方程通解与自身的一个特解之和。

伯努利方程

y ′ = P ( x ) y + Q ( x ) y n (2.3) y' = P(x)y + Q(x){y^n} \tag{2.3} y=P(x)y+Q(x)yn(2.3)
将方程左右两边同乘以 y − n y^{- n} yn,得:
y − n y ′ = P ( x ) y 1 − n + Q ( x ) {y^{ - n}}y' = P(x){y^{1 - n}} + Q(x) yny=P(x)y1n+Q(x)

z = y 1 − n z = {y^{1 - n}} z=y1n,带入上式,得:
1 1 − n d z d x = P ( x ) z + Q ( x ) \frac{1}{{1 - n}}\frac{{dz}}{{dx}} = P(x)z + Q(x) 1n1dxdz=P(x)z+Q(x)
整理,得:
d z d x = ( 1 − n ) P ( x ) z + ( 1 − n ) Q ( x ) \frac{{dz}}{{dx}} = (1 - n)P(x)z + (1 - n)Q(x) dxdz=(1n)P(x)z+(1n)Q(x)

至此,问题转化为(2.2)

通解为:
y 1 − n = e ∫ ( 1 − n ) P ( x ) d x [ ∫ ( 1 − n ) Q ( x ) e − ∫ ( 1 − n ) P ( x ) d x d x + c ] {y^{1 - n}} = {e^{\int {(1 - n)P(x)dx} }}[\int {(1 - n)Q(x){e^{ - \int {(1 - n)P(x)dx} }}dx + c} ] y1n=e(1n)P(x)dx[(1n)Q(x)e(1n)P(x)dxdx+c]

黎卡提方程

d y d x = P ( x ) y 2 + Q ( x ) y + R ( x ) (2.4) \frac{{dy}}{{dx}} = P(x){y^2} + Q(x)y + R(x)\tag{2.4} dxdy=P(x)y2+Q(x)y+R(x)(2.4)

首先找出方程一特 y ( x ) = y ~ ( x ) y(x) = \tilde y(x) y(x)=y~(x)

y ′ = z ′ + y ~ ′ ( x ) = P ( x ) ( z + y ~ ) 2 + Q ( x ) ( z + y ~ ) + R ( x ) = P ( x ) z 2 + ( 2 y ~ P ( x ) + Q ( x ) ) z + P ( x ) y ~ 2 + Q ( x ) y ~ + R ( x ) \begin{aligned} y'=z' + \tilde y'(x) &=P(x){(z + \tilde y)^2} + Q(x)(z + \tilde y) + R(x){\rm{ }}\\ &=P(x){z^2} + (2\tilde yP(x) + Q(x))z + P(x){\tilde y^2} + Q(x)\tilde y + R(x)\end{aligned} y=z+y~(x)=P(x)(z+y~)2+Q(x)(z+y~)+R(x)=P(x)z2+(2y~P(x)+Q(x))z+P(x)y~2+Q(x)y~+R(x)
考虑到 y ~ ′ ( x ) = P ( x ) y ~ 2 + Q ( x ) y ~ + R ( x ) \tilde y'(x)=P(x){\tilde y^2} + Q(x)\tilde y + R(x) y~(x)=P(x)y~2+Q(x)y~+R(x),上式可化为
z ′ = P ( x ) z 2 + ( 2 y ~ P ( x ) + Q ( x ) ) z z' = P(x){z^2} + (2\tilde yP(x) + Q(x))z z=P(x)z2+(2y~P(x)+Q(x))z
至此,问题求解 z ′ z' z转化为(2.3)

求得 z ′ z' z后,可自然求得 y ( x ) y(x) y(x)

恰当方程与积分因子

恰当方程

M ( x , y ) d x + N ( x , y ) d y = 0 (3.1) M(x,y)dx + N(x,y)dy = 0\tag{3.1} M(x,y)dx+N(x,y)dy=0(3.1)

其中, ∂ M ( x , y ) ∂ y = ∂ N ( x , y ) ∂ x \frac{{\partial M(x,y)}}{{\partial y}} = \frac{{\partial N(x,y)}}{{\partial x}} yM(x,y)=xN(x,y)

  • 解法1:不定积分法
    u ( x , y ) = ∫ M ( x , y ) d x + ϕ ( y ) u(x,y) = \int {M(x,y)dx + \phi (y)} u(x,y)=M(x,y)dx+ϕ(y)
    ∂ u ∂ y = N ( x , y ) \frac{{\partial u}}{{\partial y}} = N(x,y) yu=N(x,y)求得 ϕ ( y ) \phi (y) ϕ(y)
  • 解法2:分组凑微法
    采用“分项组合”的方法,把本身已构成全微分的项分出来,再把余的项凑成全微分.
    需要熟记的简单二元函数的全微分:
    y d x + x d y = d ( x y ) ydx + xdy = d(xy) ydx+xdy=d(xy)
    y d x − x d y y 2 = d ( x y ) \frac{{ydx - xdy}}{{{y^2}}} = d(\frac{x}{y}) y2ydxxdy=d(yx)
    − y d x + x d y x 2 = d ( y x ) \frac{{ - ydx + xdy}}{{{x^2}}} = d(\frac{y}{x}) x2ydx+xdy=d(xy)
    y d x − x d y x y = d ( ln ⁡ ∣ x y ∣ ) \frac{{ydx - xdy}}{{xy}} = d(\ln |\frac{x}{y}|) xyydxxdy=d(lnyx)
    y d x − x d y x 2 + y 2 = d ( arctan ⁡ x y ) \frac{{ydx - xdy}}{{{x^2} + {y^2}}} = d(\arctan \frac{x}{y}) x2+y2ydxxdy=d(arctanyx)
    y d x − x d y x 2 − y 2 = 1 2 d ( ln ⁡ ∣ x − y x + y ∣ ) \frac{{ydx - xdy}}{{{x^2} - {y^2}}}=\frac{1}{2}d(\ln \left| {\frac{{x - y}}{{x + y}}} \right|) x2y2ydxxdy=21d(lnx+yxy)
    x d x + y d y = d ( x 2 + y 2 2 ) xdx + ydy = d\left( {\frac{{{x^2} + {y^2}}}{2}} \right) xdx+ydy=d(2x2+y2)
    x d y + y d x x y = d ( ln ⁡ ∣ x y ∣ ) \frac{{xdy + ydx}}{{xy}} = d\left( {\ln \left| {xy} \right|} \right) xyxdy+ydx=d(lnxy)
    x d x + y d y x 2 + y 2 = d ( 1 2 ln ⁡ ( x 2 + y 2 ) ) \frac{{xdx + ydy}}{{{x^2} + {y^2}}} = d\left( {\frac{1}{2}\ln ({x^2} + {y^2})} \right) x2+y2xdx+ydy=d(21ln(x2+y2))
  • 解法3:线积分法
    通解为:
    ∫ x 0 x M ( x , y 0 ) d x + ∫ y 0 y N ( x , y ) d y = c \begin{aligned} \int_{{x_0}}^x {M(x,{y_0})dx}+ \int_{{y_0}}^y {N(x,y)dy} =c \end{aligned} x0xM(x,y0)dx+y0yN(x,y)dy=c

积分因子

定义
M ( x , y ) d x + N ( x , y ) d y = 0 M(x,y)dx+N(x,y)dy=0 M(x,y)dx+N(x,y)dy=0
如果存在连续可微函数 μ ( x , y v ) ≤ 0 \mu(x, yv)\leq 0 μ(x,yv)0,使得
μ ( x , y ) M ( x , y ) d x + μ ( x , y ) N ( x , y ) d y = 0 \mu (x, y)M(x, y)dx+ \mu (x, y)N(x, y)dy= 0 μ(x,y)M(x,y)dx+μ(x,y)N(x,y)dy=0
为恰当方程,则 μ ( x , y \mu(x, y μ(x,y)是方程(1)的一个积分因子
定理
微分方程(3.2)有一个仅依赖于x的积分因子的充要条件是
ψ ( x ) = ( ∂ M ∂ y − ∂ N ∂ x ) N \psi(x)=\frac{(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}) }{N} ψ(x)=N(yMxN)
仅与 x x x有关,这时(3.2)的积分因子为
μ ( x ) = e ∫ ψ ( x ) d x \mu(x)=e^{\int\psi(x)dx} μ(x)=eψ(x)dx
同理
微分方程(3.2)有一个仅依赖于x的积分因子的充要条件是
ψ ( x ) = ( ∂ M ∂ y − ∂ N ∂ x ) − M \psi(x)=\frac{(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}) }{-M} ψ(x)=M(yMxN)
仅与 x x x有关,这时(3.2)的积分因子为
μ ( y ) = e ∫ ψ ( y ) d y \mu(y)=e^{\int\psi(y)dy} μ(y)=eψ(y)dy

一阶隐式方程与参数表示

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值